Created
May 13, 2025 14:20
-
-
Save attentionmech/7dbc564ed3eb01f6e81cca6b262717b4 to your computer and use it in GitHub Desktop.
self-similar curve fitting test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import os | |
# --- GELU Activation --- | |
def gelu(x): | |
return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x**3))) | |
def gelu_derivative(x): | |
tanh_term = np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x**3)) | |
term1 = 0.5 * (1 + tanh_term) | |
term2 = (0.5 * x * (1 - tanh_term ** 2) * | |
(np.sqrt(2 / np.pi) * (1 + 3 * 0.044715 * x**2))) | |
return term1 + term2 | |
# --- Self-Similar Sine Generator --- | |
def self_similar_sine(x, depth=5, base_freq=1.0, decay=0.5): | |
y = np.zeros_like(x) | |
for i in range(depth): | |
freq = base_freq * (2 ** i) | |
amp = decay ** i | |
y += amp * np.sin(freq * x) | |
return y | |
# --- Neural Network with 3 Hidden Layers and GELU --- | |
class NeuralNetwork: | |
def __init__(self, input_size, hidden_size, output_size): | |
self.weights1 = np.random.randn(input_size, hidden_size) * 0.1 | |
self.bias1 = np.zeros((1, hidden_size)) | |
self.weights2 = np.random.randn(hidden_size, hidden_size) * 0.1 | |
self.bias2 = np.zeros((1, hidden_size)) | |
self.weights3 = np.random.randn(hidden_size, hidden_size) * 0.1 | |
self.bias3 = np.zeros((1, hidden_size)) | |
self.weights4 = np.random.randn(hidden_size, output_size) * 0.1 | |
self.bias4 = np.zeros((1, output_size)) | |
def forward(self, X): | |
self.z1 = np.dot(X, self.weights1) + self.bias1 | |
self.a1 = gelu(self.z1) | |
self.z2 = np.dot(self.a1, self.weights2) + self.bias2 | |
self.a2 = gelu(self.z2) | |
self.z3 = np.dot(self.a2, self.weights3) + self.bias3 | |
self.a3 = gelu(self.z3) | |
self.z4 = np.dot(self.a3, self.weights4) + self.bias4 | |
return self.z4 | |
def backward(self, X, y, learning_rate): | |
m = X.shape[0] | |
dZ4 = self.z4 - y | |
dW4 = np.dot(self.a3.T, dZ4) / m | |
db4 = np.sum(dZ4, axis=0, keepdims=True) / m | |
dA3 = np.dot(dZ4, self.weights4.T) | |
dZ3 = dA3 * gelu_derivative(self.z3) | |
dW3 = np.dot(self.a2.T, dZ3) / m | |
db3 = np.sum(dZ3, axis=0, keepdims=True) / m | |
dA2 = np.dot(dZ3, self.weights3.T) | |
dZ2 = dA2 * gelu_derivative(self.z2) | |
dW2 = np.dot(self.a1.T, dZ2) / m | |
db2 = np.sum(dZ2, axis=0, keepdims=True) / m | |
dA1 = np.dot(dZ2, self.weights2.T) | |
dZ1 = dA1 * gelu_derivative(self.z1) | |
dW1 = np.dot(X.T, dZ1) / m | |
db1 = np.sum(dZ1, axis=0, keepdims=True) / m | |
self.weights4 -= learning_rate * dW4 | |
self.bias4 -= learning_rate * db4 | |
self.weights3 -= learning_rate * dW3 | |
self.bias3 -= learning_rate * db3 | |
self.weights2 -= learning_rate * dW2 | |
self.bias2 -= learning_rate * db2 | |
self.weights1 -= learning_rate * dW1 | |
self.bias1 -= learning_rate * db1 | |
def train(self, X, y, epochs, learning_rate, output_folder): | |
os.makedirs(output_folder, exist_ok=True) | |
for epoch in range(epochs): | |
self.z4 = self.forward(X) | |
self.backward(X, y, learning_rate) | |
if epoch % 50 == 0: | |
loss = np.mean((self.z4 - y) ** 2) | |
print(f'Epoch {epoch}, Loss: {loss:.6f}') | |
plt.figure(figsize=(10, 6)) | |
plt.plot(X, y, label="Target Curve", color='blue') | |
plt.plot(X, self.z4, label="NN Prediction", color='red', linestyle='dashed') | |
plt.legend() | |
plt.xlabel('x') | |
plt.ylabel('y') | |
plt.title(f'Epoch {epoch} - Prediction vs Target') | |
plt.grid(True) | |
image_path = os.path.join(output_folder, f'epoch_{epoch}.png') | |
plt.savefig(image_path) | |
plt.close() | |
# --- Dataset Generation --- | |
X = np.linspace(-2 * np.pi, 2 * np.pi, 1000).reshape(-1, 1) | |
y = self_similar_sine(X, depth=5, base_freq=1.0, decay=0.5) | |
# Optional: Visualize the target curve | |
plt.figure(figsize=(10, 4)) | |
plt.plot(X, y, label='Self-Similar Sine Target', color='purple') | |
plt.title("Self-Similar Sine Curve") | |
plt.grid(True) | |
plt.legend() | |
plt.show() | |
# --- Train the Neural Network --- | |
input_size = 1 | |
hidden_size = 50 | |
output_size = 1 | |
learning_rate = 0.05 | |
epochs = 1000 | |
output_folder = 'output_images' | |
nn = NeuralNetwork(input_size, hidden_size, output_size) | |
nn.train(X, y, epochs, learning_rate, output_folder) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment