Skip to content

Instantly share code, notes, and snippets.

@audhiaprilliant
Last active May 18, 2022 14:15
Show Gist options
  • Select an option

  • Save audhiaprilliant/1071f0d2cfd595ae6e4e216e67366d6a to your computer and use it in GitHub Desktop.

Select an option

Save audhiaprilliant/1071f0d2cfd595ae6e4e216e67366d6a to your computer and use it in GitHub Desktop.
End to end machine learning model deployment using flask
# Flask
from flask import Flask, render_template, request
# Data manipulation
import pandas as pd
# Matrices manipulation
import numpy as np
# Script logging
import logging
# ML model
import joblib
# JSON manipulation
import json
# Utilities
import sys
import os
# Current directory
current_dir = os.path.dirname(__file__)
# Flask app
app = Flask(__name__, static_folder = 'static', template_folder = 'template')
# Logging
app.logger.addHandler(logging.StreamHandler(sys.stdout))
app.logger.setLevel(logging.ERROR)
# Function
def ValuePredictor(data = pd.DataFrame):
# Model name
model_name = 'bin/xgboostModel.pkl'
# Directory where the model is stored
model_dir = os.path.join(current_dir, model_name)
# Load the model
loaded_model = joblib.load(open(model_dir, 'rb'))
# Predict the data
result = loaded_model.predict(data)
return result[0]
# Home page
@app.route('/')
def home():
return render_template('index.html')
# Prediction page
@app.route('/prediction', methods = ['POST'])
def predict():
if request.method == 'POST':
# Get the data from form
name = request.form['name']
gender = request.form['gender']
education = request.form['education']
self_employed = request.form['self_employed']
marital_status = request.form['marital_status']
dependents = request.form['dependents']
applicant_income = request.form['applicant_income']
coapplicant_income = request.form['coapplicant_income']
loan_amount = request.form['loan_amount']
loan_term = request.form['loan_term']
credit_history = request.form['credit_history']
property_area = request.form['property_area']
# Load template of JSON file containing columns name
# Schema name
schema_name = 'data/columns_set.json'
# Directory where the schema is stored
schema_dir = os.path.join(current_dir, schema_name)
with open(schema_dir, 'r') as f:
cols = json.loads(f.read())
schema_cols = cols['data_columns']
# Parse the categorical columns
# Column of dependents
try:
col = ('Dependents_' + str(dependents))
if col in schema_cols.keys():
schema_cols[col] = 1
else:
pass
except:
pass
# Column of property area
try:
col = ('Property_Area_' + str(property_area))
if col in schema_cols.keys():
schema_cols[col] = 1
else:
pass
except:
pass
# Parse the numerical columns
schema_cols['ApplicantIncome'] = applicant_income
schema_cols['CoapplicantIncome'] = coapplicant_income
schema_cols['LoanAmount'] = loan_amount
schema_cols['Loan_Amount_Term'] = loan_term
schema_cols['Gender_Male'] = gender
schema_cols['Married_Yes'] = marital_status
schema_cols['Education_Not Graduate'] = education
schema_cols['Self_Employed_Yes'] = self_employed
schema_cols['Credit_History_1.0'] = credit_history
# Convert the JSON into data frame
df = pd.DataFrame(
data = {k: [v] for k, v in schema_cols.items()},
dtype = float
)
# Create a prediction
print(df.dtypes)
result = ValuePredictor(data = df)
# Determine the output
if int(result) == 1:
prediction = 'Dear Mr/Mrs/Ms {name}, your loan is approved!'.format(name = name)
else:
prediction = 'Sorry Mr/Mrs/Ms {name}, your loan is rejected!'.format(name = name)
# Return the prediction
return render_template('prediction.html', prediction = prediction)
# Something error
else:
# Return error
return render_template('error.html', prediction = prediction)
if __name__ == '__main__':
app.run(debug = True)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment