Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save audhiaprilliant/916d624f8b19aebccd51ccbcf67a4a76 to your computer and use it in GitHub Desktop.

Select an option

Save audhiaprilliant/916d624f8b19aebccd51ccbcf67a4a76 to your computer and use it in GitHub Desktop.
Twitter Data Visualization using ggplot2
# Total tweets of 2019-05-28
ggplot(data.hour.date1)+
geom_bar(aes(x = Hour,
y = Total.Tweets,
fill = I('red')),
stat = 'identity',
alpha = 0.75,
show.legend = FALSE)+
geom_hline(yintercept = mean(data.hour.date1$Total.Tweets),
col = I('black'),
size = 1)+
geom_text(aes(fontface = 'italic',
label = paste('Average:',
ceiling(mean(data.hour.date1$Total.Tweets)),
'Tweets per hour'),
x = 6.5,
y = mean(data.hour.date1$Total.Tweets)+5),
hjust = 'left',
size = 4)+
labs(title = 'Total Tweets per Hours - Prabowo Subianto',
subtitle = '28 May 2019',
caption = 'Twitter Crawling 28 - 29 May 2019')+
xlab('Time of Day')+
ylab('Total Tweets')+
ylim(c(0,100))+
theme_bw()+
scale_fill_brewer(palette = 'Dark2')
# Total tweets of 2019-05-29
ggplot(data.hour.date2)+
geom_bar(aes(x = Hour,
y = Total.Tweets,
fill = I('red')),
stat = 'identity',
alpha = 0.75,
show.legend = FALSE)+
geom_hline(yintercept = mean(data.hour.date2$Total.Tweets),
col = I('black'),
size = 1)+
geom_text(aes(fontface = 'italic',
label = paste('Average:',
ceiling(mean(data.hour.date2$Total.Tweets)),
'Tweets per hour'),
x = 1,
y = mean(data.hour.date2$Total.Tweets)+6),
hjust = 'left',
size = 4)+
labs(title = 'Total Tweets per Hours - Prabowo Subianto',
subtitle = '29 May 2019',
caption = 'Twitter Crawling 28 - 29 May 2019')+
xlab('Time of Day')+
ylab('Total Tweets')+
ylim(c(0,100))+
theme_bw()+
scale_fill_brewer(palette = 'Dark2')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment