Created
May 16, 2022 12:13
-
-
Save audhiaprilliant/972e7112f66954cfce8af6164509de8a to your computer and use it in GitHub Desktop.
End to end machine learning model deployment using flask
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Machine learning model development | |
| # XGBoost model | |
| xgb_model = xgb.XGBClassifier( | |
| objective = 'binary:logistic', | |
| use_label_encoder = False | |
| ) | |
| # Define parameters range | |
| params = { | |
| 'eta': np.arange(0.1, 0.26, 0.05), | |
| 'min_child_weight': np.arange(1, 5, 0.5).tolist(), | |
| 'gamma': [5], | |
| 'subsample': np.arange(0.5, 1.0, 0.11).tolist(), | |
| 'colsample_bytree': np.arange(0.5, 1.0, 0.11).tolist() | |
| } | |
| # Make a scorer from a performance metric or loss function | |
| scorers = { | |
| 'f1_score': make_scorer(f1_score), | |
| 'precision_score': make_scorer(precision_score), | |
| 'recall_score': make_scorer(recall_score), | |
| 'accuracy_score': make_scorer(accuracy_score) | |
| } | |
| # k-fold cross validation | |
| skf = KFold(n_splits = 10, shuffle = True) | |
| # Set up the grid search CV | |
| grid = GridSearchCV( | |
| estimator = xgb_model, | |
| param_grid = params, | |
| scoring = scorers, | |
| n_jobs = -1, | |
| cv = skf.split(X_train, np.array(y_train)), | |
| refit = 'accuracy_score' | |
| ) | |
| # Fit the model | |
| grid.fit(X = X_train, y = y_train) | |
| # Best parameters | |
| grid.best_params_ | |
| # Create a prediction of training | |
| predicted = grid.predict(X_val) | |
| # Model evaluation - training data | |
| accuracy_baseline = accuracy_score(predicted, np.array(y_val)) | |
| recall_baseline = recall_score(predicted, np.array(y_val)) | |
| precision_baseline = precision_score(predicted, np.array(y_val)) | |
| f1_baseline = f1_score(predicted, np.array(y_val)) | |
| print('Accuracy for baseline :{}'.format(round(accuracy_baseline, 5))) | |
| print('Recall for baseline :{}'.format(round(recall_baseline, 5))) | |
| print('Precision for baseline :{}'.format(round(precision_baseline, 5))) | |
| print('F1 Score for baseline :{}'.format(round(f1_baseline, 5))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment