Skip to content

Instantly share code, notes, and snippets.

@aurielfournier
Created December 15, 2015 19:05
Show Gist options
  • Save aurielfournier/2bd9bfbecee17b6ef35e to your computer and use it in GitHub Desktop.
Save aurielfournier/2bd9bfbecee17b6ef35e to your computer and use it in GitHub Desktop.
Call:
glm(formula = shr ~ for_per1 + ow_per1 + ag_per1 + wet_per1,
data = datdat)
Deviance Residuals:
Min 1Q Median 3Q Max
-7.859 -3.820 -1.474 2.036 24.141
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.41818 1.24226 4.362 3.57e-05 ***
for_per1 -0.08297 0.04011 -2.068 0.0416 *
ow_per1 0.22022 0.10055 2.190 0.0312 *
ag_per1 0.01198 0.03434 0.349 0.7281
wet_per1 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 36.78429)
Null deviance: 3500.8 on 89 degrees of freedom
Residual deviance: 3163.4 on 86 degrees of freedom
AIC: 585.77
Number of Fisher Scoring iterations: 2
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment