Skip to content

Instantly share code, notes, and snippets.

@aurora-mareviv
Last active July 7, 2017 19:55
Show Gist options
  • Save aurora-mareviv/5895082 to your computer and use it in GitHub Desktop.
Save aurora-mareviv/5895082 to your computer and use it in GitHub Desktop.
Power estimations in Mitochondrial DNA association studies: a Samuels et al. impementation (with Graph)
#under GNU General Public License
#server.R
library(shiny)
library(ggplot2)
shinyServer(function(input, output) {
## My function:
f <- function(min.cases, max.cases, p0, OR.cas.ctrl, Nh, sig.level) {
if (min.cases <= max.cases){
num.cases <- seq(min.cases, max.cases, by=50)}
if (min.cases > max.cases){
num.cases <- seq(max.cases, min.cases, by=50)}
ncases <- num.cases
p0 <- p0
Nh <- Nh
OR.cas.ctrl <- OR.cas.ctrl
sig.level <- sig.level
# Parameters related to sig.level, from [Table 2] of Samuels et al.
# For 90% power and alpha = .05, Nscaled = 8.5
if (sig.level == 0.05){
A <- -28 # Parameter A for alpha=.05
x0 <- 2.6 # Parameter x0 for alpha=.05
d <- 2.4 # Parameter d for alpha=.05
}
if (sig.level == 0.01){
A <- -13 # Parameter A for alpha=.01
x0 <- 5 # Parameter x0 for alpha=.01
d <- 2.5 # Parameter d for alpha=.01
}
if (sig.level == 0.001){
A <- -7 # Parameter A for alpha=.001
x0 <- 7.4 # Parameter x0 for alpha=.001
d <- 2.8 # Parameter d for alpha=.001
}
out.pow <- NULL # initialize vector
for(ncases in ncases){
OR.ctrl.cas <- 1 / OR.cas.ctrl # 1. CALCULATE P1 FROM A PREDEFINED P0, AND A DESIRED OR
OR <- OR.ctrl.cas
bracket.pw <- p0 / (OR - OR*p0) # obtained after isolating p1 in OR equation [3].
p1 <- bracket.pw / (1 + bracket.pw)
Nh037 <- Nh^0.37 # 2. CALCULATE NSCALED
num.n <- num.cases*((p1-p0)^2)
den.n <- (p1*(1-p1) + p0*(1-p0))*Nh037
Nscaled <- num.n/den.n
num.power <- A - 100 # 3. CALCULATE POWER
den.power <- 1 + exp((Nscaled - x0)/d)
power <- 100 + (num.power/den.power) # The power I have to detect a given OR with my data, at a given alpha
}
OR <- OR.cas.ctrl
sig.level <- as.numeric(sig.level)
power <- round(power, 2)
Nscaled <- round(Nscaled, 3)
out.pow <- data.frame(num.cases, Nh, Nscaled, p0, OR, sig.level, power)
out.pow
}
mydata <- reactive(f(input$min.cases,
input$max.cases,
input$p0,
input$OR.cas.ctrl,
input$Nh,
input$sig.level))
# Show the final calculated value
output$powTable <- renderDataTable(
{mydata <- f(input$min.cases,
input$max.cases,
input$p0,
input$OR.cas.ctrl,
input$Nh,
input$sig.level)
mydata},
options = list(paging = FALSE, searching = FALSE)
)
# Show the Download handlers:
output$downloadData <- downloadHandler(
filename = function() { paste(input$mydata, 'mtDNA_power_table.csv', sep='') },
content = function(file) {
write.csv(mydata(), file, na="")
}
)
output$downloadPlot <- downloadHandler(
filename = function() { paste(input$mydata, 'mtDNA_power_plot.pdf', sep='') },
content = function(file) {
pdf(file)
df <- mydata()
p <- print(ggplot(data = mydata(), aes(num.cases, power)) +
theme_bw() +
theme(text=element_text(size=12)) +
labs(title = paste("Power estimates; ", "p0 =", " ", df[1,4], ", ", "Nh =", " ", df[1,2], ", ", "p =", " ", df[1,6], sep = "")) +
scale_color_brewer(palette = "Dark2", guide = guide_legend(reverse=TRUE)) +
xlab(paste("Number of Cases, Controls")) +
ylab("Power (%)") +
xlim(50, 1000) +
ylim(0, 100) +
# scale_x_log10() +
geom_line(alpha=0.8, size=0.2) +
geom_point(aes(shape = factor(OR)), colour="black"))
dev.off()
}
)
# Show the plot with a statistical power curve
output$powHap <- renderPlot(
{
df <- mydata()
p <- print(ggplot(data = mydata(), aes(num.cases, power)) +
theme_bw() +
theme(text=element_text(size=12)) +
labs(title = paste("Power estimates; ", "p0 =", " ", df[1,4], ", ", "Nh =", " ", df[1,2], ", ", "p =", " ", df[1,6], sep = "")) +
scale_color_brewer(palette = "Dark2", guide = guide_legend(reverse=TRUE)) +
xlab(paste("Number of Cases, Controls")) +
ylab("Power (%)") +
xlim(50, 1000) +
ylim(0, 100) +
# scale_x_log10() +
geom_line(alpha=0.8, size=0.2) +
geom_point(aes(shape = factor(OR)), colour="black"))
})
})
#under GNU General Public License
#ui.R
library(shiny)
library(ggplot2)
# Define UI for slider demo application
shinyUI(pageWithSidebar(
# Application title
headerPanel("mtDNA power estimation"),
# Sidebar with sliders that demonstrate various available options
sidebarPanel(
# Simple integer interval
sliderInput("min.cases", "Minimum number of cases (num.cases):",
min=50, max=1000, value = 100, step=50),
sliderInput("max.cases", "Maximum number of cases (num.cases):",
min=50, max=1000, value = 600, step=50),
sliderInput("p0", "Frequency of the haplogroup in controls (p0):",
min=0, max=1, value=0.5),
sliderInput("OR.cas.ctrl", "Odds ratio to detect (OR):",
min=1.05, max=4, value=2.3, step=0.05),
sliderInput("Nh", "Number of haplogroup categories (Nh):",
min=4, max=20, value=11),
selectInput("sig.level", "Significance level:",
choices = c("0.05", "0.01", "0.001")),
HTML("<h4>Instructions:</h4>"),
helpText("Power and sample size estimates for genetic association
studies on mitochondrial DNA haplogroups.
Formulae in Samuels et al., AJHG 2006 ",
a("PMC1424681", href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424681/", target="_blank"), "."),
helpText("Can be used when multiple Chi-square tests are involved
(one case-control comparison for each haplogroup category).
Cases correspond to the same number of controls."),
helpText("Written in R/Shiny by A. Baluja."),
HTML("<h5>&nbsp;</h5>"),
HTML("<h4>R package via GitHub:</h4>"),
HTML("<pre>devtools::install_github('aurora-mareviv/mthapower')</pre>"),
HTML("<h4> </h4>"),
HTML("<h4>Shiny app (local) via Gist:</h4>"),
HTML("<pre>shiny::runGist('5895082')</pre>"),
downloadButton('downloadData', 'Download dataset'),
downloadButton('downloadPlot', 'Download plot')
),
# Show a table summarizing the values entered
mainPanel(
plotOutput("powHap"),
div(dataTableOutput("powTable"), style = "font-size:90%")
)
)
)
# To execute this script from inside R, you need to have the ui.R and server.R files into the session's working directory. Then, type:
# runApp()
# To execute directly this Gist, from the Internet to your browser, type:
# shiny::runGist('5895082')
@aurora-mareviv
Copy link
Author

Needs ggplot2 installed first. Gives an error when trying to run this Gist from R v.3.0.0.
Updating packages after R upgrading would hopefully solve the issue.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment