Last active
April 16, 2020 18:09
-
-
Save auser/13fd8e41380836f2f6452f7bff42b54f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
np.random.seed(1) | |
# train comes from the titantic dataset provided by | |
# kaggle (https://www.kaggle.com/c/titanic/data) | |
df = pd.read_csv('./data/titanic-train.csv') | |
def preprocess(raw_data): | |
# Preprocess data | |
# Convert to binary fields | |
dummy_fields = ['Pclass', 'Embarked', 'Sex'] | |
dummies = pd.get_dummies(raw_data[dummy_fields]) | |
data = pd.concat([raw_data, dummies], axis=1) | |
# drop other fields | |
fields_to_drop = ['PassengerId', 'Ticket', 'Parch', | |
'Name', 'Cabin', 'Fare', 'Pclass', | |
'Embarked', 'Sex', 'Sex_male'] | |
data = data.drop(fields_to_drop, axis=1) | |
mean, std = data['Age'].mean(), data['Age'].std() | |
data.loc[:, 'Age'] = (data['Age'] - mean) / std | |
data = data.fillna(0) | |
data = data.sample(frac=1).reset_index(drop=True) | |
X = data.drop('Survived', axis=1).values | |
y = data[['Survived']].values | |
return X, y | |
train = df.sample(frac=0.8, random_state=200) | |
test = df.drop(train.index) | |
X_train, y_train = preprocess(train) | |
X_test, y_test = preprocess(test) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment