Last active
March 22, 2017 21:55
-
-
Save austensatterlee/7e207ae28cddfeaaf391 to your computer and use it in GitHub Desktop.
Neat-o Mathematics
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
# Example kernels | |
def uniform_kernel(x): | |
norm_coeff = .5 | |
return .5*np.bitwise_and(-1<x,1>x) | |
def normal_kernel(x): | |
norm_coeff = (2*np.pi)**-.5 | |
return .5*np.exp(-.5*x**2) | |
def KDE(input_samples,kernel,bandwidth=1.0): | |
""" | |
Takes in an array of samples, a kernel func (e.g. unigorm_kernel,normal_kernel), | |
and an optional "bandwidth" smoothing parameter | |
""" | |
def f(x): | |
return 1./(bandwidth*len(input_samples))*kernel(1./bandwidth*(x-input_samples)).sum() | |
return np.vectorize(f) | |
### | |
# Example: | |
### | |
# import matplotlib.pyplot as plt | |
# samples = np.hstack([np.random.normal(0,1,100),np.random.normal(3,.5,100)]) | |
# domain = np.linspace(-5,10,1500) | |
# f,ax = plt.subplots(2) | |
# ax[0].hist(samples,normed=True) | |
# ax[0].plot(domain,KDE(samples,normal_kernel)(domain)) | |
# ax[0].set_title('normal kernel') | |
# ax[1].hist(samples,normed=True) | |
# ax[1].plot(domain,KDE(samples,uniform_kernel)(domain)) | |
# ax[1].set_title('uniform kernel') |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def logmap(n,x0,r=4): | |
_logmapcache={} | |
def _logmap(n): | |
if n==0: | |
return x0 | |
xprev=_logmapcache[n] if n in _logmapcache else _logmap(n-1) | |
return r*xprev*(1-xprev) | |
return _logmap(n) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment