We can estimate the relative risk for the causal interpretation of CFR estimates (Lipsitch et al.)
non-death | death | |
---|---|---|
44-younger | 311 | 768 |
45+older | 51 | 299 |
- 44-younger: CFR = 768/(311+768) = 0.71
- 45+older: CFR = 299/(51+299) = 0.85
library(epitools)
rr_matrix <- matrix(c(311, 51, 768, 299),nrow = 2, ncol = 2)
epitools::riskratio(rr_matrix)
#> $data
#> Outcome
#> Predictor Disease1 Disease2 Total
#> Exposed1 311 768 1079
#> Exposed2 51 299 350
#> Total 362 1067 1429
#>
#> $measure
#> risk ratio with 95% C.I.
#> Predictor estimate lower upper
#> Exposed1 1.000000 NA NA
#> Exposed2 1.200227 1.133086 1.271346
#>
#> $p.value
#> two-sided
#> Predictor midp.exact fisher.exact chi.square
#> Exposed1 NA NA NA
#> Exposed2 3.179312e-08 4.200177e-08 9.982161e-08
#>
#> $correction
#> [1] FALSE
#>
#> attr(,"method")
#> [1] "Unconditional MLE & normal approximation (Wald) CI"
Created on 2024-08-13 with reprex v2.1.0