Last active
February 23, 2024 14:26
-
-
Save averissimo/8804d3ffed0613f9f912c4ef3465fbc1 to your computer and use it in GitHub Desktop.
Electricity plot
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#' @examples | |
#' renv::install("isocountry") | |
#' renv::install("readr") | |
#' renv::install("dplyr") | |
#' renv::install("forcats") | |
#' renv::install("rlang") | |
#' renv::install("glue") | |
#' renv::install("readr") | |
#' renv::install("clauswilke/ggtextures") | |
library(isocountry) | |
library(ggplot2) | |
library(ggtextures) | |
library(dplyr) | |
library(forcats) | |
library(glue) | |
library(rlang) | |
library(readr) | |
country_emoji <- function(country_codes) { | |
vapply( | |
country_codes, | |
function(country_code) { | |
if (is.null(country_code) || isTRUE(is.na(country_code))) { | |
return("") | |
} | |
intToUtf8(127397 + strtoi(charToRaw(toupper(country_code)), 16L)) | |
}, | |
character(1) | |
) | |
} | |
# | |
# Order of Fuel Types (from most pollutent to least) | |
levels_factor <- c( | |
"Coal", "Gas", "Other Fossil", "Nuclear", "Bioenergy", "Hydro", "Wind", | |
"Solar", "Other Renewables" | |
) | |
levels_ordered <- set_names(seq_along(levels_factor), levels_factor) | |
colors_fuel <- c( | |
"#060607", "#292f34" , "#eeeeee", # Fossil | |
"#56B4E9", # Nuclear | |
"#E69F00", "#CC79A7", "#F0E442", "#D55E00", "#0072B2" # Renewables | |
) | |
textured_mask <- file.path( | |
"https://gist.githubusercontent.com", | |
"averissimo/8804d3ffed0613f9f912c4ef3465fbc1/raw", | |
"50b92ab34c8d8c7e73a4d5cfeb847b35b75ff417/noisy-texture.png" | |
) | |
text_color <- "#36454f" | |
# | |
# | |
url <- file.path( | |
"https://ember-climate.org", | |
"app/uploads/2022/07/yearly_full_release_long_format.csv" | |
) | |
dat <- read_csv(url) |> | |
filter(.data[["Area type"]] == "Country") |> | |
filter(.data[["EU"]] == 1) |> | |
left_join( | |
isocountry |> | |
select(iso_2 = "alpha_2", "Country code" = "alpha_3") |> | |
bind_rows( | |
tibble( | |
iso_2 = "XK", | |
"Country code" = "XKX" | |
) | |
) | |
) |> | |
relocate(iso_2, .after = "Country code") |> | |
# filter(.data[["Country code"]] %in% c("DEU", "PRT")) |> | |
filter(.data$Year == "2023") | |
# Filtered data to work with | |
dat_filtered <- dat |> | |
filter(.data$Unit != "%") |> | |
filter( | |
.data$Category == "Electricity generation", | |
.data$Subcategory == "Fuel" | |
) |> | |
mutate(total = sum(.data$Value)) |> | |
group_by(.data$Area) |> | |
mutate( | |
subtotal = sum(.data$Value), | |
polluting_order = sum(if_else(.data$Variable %in% c("Coal", "Gas", "Other Fossil"), .data$Value, 0)) | |
) |> | |
ungroup() |> | |
mutate( | |
polluting_order = .data$polluting_order / .data$subtotal, | |
relative = .data$subtotal / .data$total, | |
Variable = fct(.data$Variable, levels = levels_factor) | |
) |> | |
select(-c("Area type", "Ember region", "EU", "OECD", "G7", "ASEAN")) | |
# Data for first plot | |
dat_plot <- dat_filtered |> | |
mutate( | |
Value = .data$Value / .data$subtotal * 100, | |
emoji = unlist(country_emoji(.data$iso_2)), | |
.after = "iso_2" | |
) |> | |
mutate( | |
relative_rounded = relative * 100, | |
relative_rounded = if_else(relative_rounded >= 1, round(relative_rounded, digits = 1), round(relative_rounded, digits = 2)), | |
label = glue("{.data$Area} {.data$emoji}"), | |
.before = "Area" | |
) |> | |
as_tibble() |> | |
mutate( | |
label = fct_reorder(.data$label, .data$polluting_order) | |
) | |
# ggplot(dat_plot) + | |
# aes(x = label, y = Value, fill = Variable) + | |
# geom_bar(stat = "identity", position = "stack") + | |
# coord_flip() + | |
# scale_fill_manual(values = colors_fuel) + | |
# theme_minimal() | |
# Data for manual rectangular plot | |
dat_plot_2 <- dat_plot |> | |
select(label, Area, Variable, Value, subtotal, total, relative, polluting_order, emoji) |> | |
mutate(levels_order = levels_ordered[.data$Variable]) |> | |
group_by(Area) |> | |
arrange(desc(polluting_order), subtotal, Area, levels_order) |> | |
mutate( | |
ymax = cumsum(lag(.data$Value, default = 0)), ymax = cumsum(.data$Value), | |
ymin = ymax - .data$Value | |
) |> | |
rowwise() |> | |
mutate( | |
# subtotal_norm = log(1 + subtotal) | |
subtotal_norm = max(subtotal, 50) # Minimal cap for the bar height | |
) |> | |
group_by(Area) |> | |
mutate(x = cumsum(if_else(row_number() == n(), subtotal_norm, 0))) |> | |
ungroup() |> | |
mutate( | |
xmin = cumsum(lag(x, default = 0)), | |
xmax = xmin + subtotal_norm | |
) | |
# Flip the plot manually | |
dat_plot_2_min <- dat_plot_2 |> | |
group_by(Area, label, relative, subtotal, emoji) |> | |
summarise( | |
ymin = min(ymin), | |
ymax = max(ymax), | |
xmin = first(xmin), | |
xmax = last(xmax), | |
.groups = "keep" | |
) | |
dat_plot_2_ready <- dat_plot_2 |> | |
rename( | |
xmin = ymin, | |
xmax = ymax, | |
ymin = xmin, | |
ymax = xmax | |
) |> | |
select(label, Variable, xmin, xmax, ymin, ymax, subtotal, emoji) |> | |
filter(xmin != xmax) # Bug in geom_textured_* | |
dat_plot_2_min_ready <- dat_plot_2_min |> rename( | |
xmin = ymin, | |
xmax = ymax, | |
ymin = xmin, | |
ymax = xmax | |
) |> | |
group_by(Area, label, relative) |> | |
mutate( | |
y = ymin + (ymax - ymin) / 2, | |
label_2 = glue("{emoji} {.data$subtotal} TWh ({round(relative * 100, digits = 2)}%)") | |
) | |
ggplot(dat_plot_2_ready) + | |
aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = Variable) + | |
geom_vline(xintercept = seq(0, 100, 25), color = "#777777ff", linetype = "dashed") + | |
geom_rect() + | |
geom_textured_rect(image = textured_mask, img_width = unit(.5, "in"), color = "#ffffff") + | |
geom_rect(data = dat_plot_2_min_ready, fill = "transparent", color = "white") + | |
geom_vline(xintercept = seq(0, 100, 25), color = "#eeeeee88", linetype = "dashed") + | |
scale_x_continuous(breaks = seq(0, 100, 25)) + | |
geom_text( | |
data = dat_plot_2_min_ready, | |
aes(y = y, label = label), | |
x = -.5, | |
size = 4, | |
inherit.aes = FALSE, | |
hjust = 1, | |
nudge_x = 2, | |
xlim = c(-15, 0), | |
force_pull = 10, | |
max.overlaps = Inf, | |
min.segment.length = 0, | |
segment.alpha = .4, | |
color = text_color | |
) + | |
geom_text( | |
data = dat_plot_2_min_ready, | |
aes(y = y, label = label_2), | |
x = 100.5, | |
size = 4, | |
inherit.aes = FALSE, | |
hjust = 0, | |
color = text_color | |
) + | |
geom_text( | |
data = data.frame(label = glue("Country total in TWh (% of EU)")), | |
aes(label = label), | |
y = max(dat_plot_2_ready$ymax) + 10, | |
x = 100.5, | |
hjust = 0, | |
size = 3, | |
inherit.aes = FALSE, | |
color = text_color | |
) + | |
scale_fill_manual(values = colors_fuel) + | |
theme_minimal() + | |
theme( | |
axis.title.y = element_blank(), | |
axis.text.y = element_blank(), | |
axis.ticks.y = element_blank(), | |
legend.position = "top", | |
panel.grid.major = element_blank(), | |
panel.grid.minor = element_blank(), | |
text = element_text(family="Helvetica-Narrow"), | |
plot.margin = margin(0, 0, 0, 0, "pt"), | |
legend.title = element_text( | |
family = "Helvetica-Narrow", | |
color = text_color, | |
size = 10 | |
), | |
legend.text = element_text( | |
family = "Helvetica-Narrow", | |
color = text_color, | |
size = 10 | |
), | |
title = element_text(family = "Helvetica-Narrow", color = text_color) | |
) + | |
expand_limits(x = c(-6, 113)) + | |
# change legend so it only has 1 row | |
guides(fill = guide_legend(nrow = 1)) + | |
theme(plot.margin = margin(1, 1, 1, 1, "cm")) + | |
labs( | |
title = glue("2023 {country_emoji('eu')} Rankings: Electricity generation by fuel type in EU countries"), | |
subtitle = "Height of bars represents electricity generation per country in 2023", | |
fill = "Fuel type:", | |
x = "Share of electricity generation (%)", | |
caption = "Source: Anual electricity data, Ember." | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment