Skip to content

Instantly share code, notes, and snippets.

@avestura
Last active December 10, 2025 10:45
Show Gist options
  • Select an option

  • Save avestura/4314d0900a44c5e07053f3f57e76577d to your computer and use it in GitHub Desktop.

Select an option

Save avestura/4314d0900a44c5e07053f3f57e76577d to your computer and use it in GitHub Desktop.
Langfuse v3 filter with SSL verify option + Cost and Usage Fixed
"""
title: Langfuse Filter Pipeline for v3 - Avestura Edition (No SSL Verify + Cost and Usage Fixed)
author: open-webui
date: 2025-07-31
version: 0.0.1
license: MIT
description: A filter pipeline that uses Langfuse v3.
requirements: langfuse>=3.0.0
"""
from typing import List, Optional
import os
import uuid
import json
from utils.pipelines.main import get_last_assistant_message
from pydantic import BaseModel
from langfuse import Langfuse
import httpx
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
def get_last_assistant_message_obj(messages: List[dict]) -> dict:
"""Retrieve the last assistant message from the message list."""
for message in reversed(messages):
if message["role"] == "assistant":
return message
return {}
class Pipeline:
class Valves(BaseModel):
pipelines: List[str] = []
priority: int = 0
secret_key: str
public_key: str
host: str
# New valve that controls whether task names are added as tags:
insert_tags: bool = True
# New valve that controls whether to use model name instead of model ID for generation
use_model_name_instead_of_id_for_generation: bool = False
debug: bool = False
ssl_verify: bool = False
def __init__(self):
self.type = "filter"
self.name = "Langfuse Filter"
self.valves = self.Valves(
**{
"pipelines": ["*"],
"secret_key": os.getenv("LANGFUSE_SECRET_KEY", "your-secret-key-here"),
"public_key": os.getenv("LANGFUSE_PUBLIC_KEY", "your-public-key-here"),
"host": os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com"),
"use_model_name_instead_of_id_for_generation": os.getenv("USE_MODEL_NAME", "false").lower() == "true",
"debug": os.getenv("DEBUG_MODE", "false").lower() == "true",
"ssl_verify": False,
}
)
self.langfuse = None
self.chat_traces = {}
self.suppressed_logs = set()
# Dictionary to store model names for each chat
self.model_names = {}
def log(self, message: str, suppress_repeats: bool = False):
if self.valves.debug:
if suppress_repeats:
if message in self.suppressed_logs:
return
self.suppressed_logs.add(message)
print(f"[DEBUG] {message}")
async def on_startup(self):
self.log(f"on_startup triggered for {__name__}")
self.set_langfuse()
async def on_shutdown(self):
self.log(f"on_shutdown triggered for {__name__}")
if self.langfuse:
try:
# End all active traces
for chat_id, trace in self.chat_traces.items():
try:
trace.end()
self.log(f"Ended trace for chat_id: {chat_id}")
except Exception as e:
self.log(f"Failed to end trace for {chat_id}: {e}")
self.chat_traces.clear()
self.langfuse.flush()
self.log("Langfuse data flushed on shutdown")
except Exception as e:
self.log(f"Failed to flush Langfuse data: {e}")
async def on_valves_updated(self):
self.log("Valves updated, resetting Langfuse client.")
self.set_langfuse()
def set_langfuse(self):
try:
self.log(f"Initializing Langfuse with host: {self.valves.host}")
self.log(
f"Secret key set: {'Yes' if self.valves.secret_key and self.valves.secret_key != 'your-secret-key-here' else 'No'}"
)
self.log(
f"Public key set: {'Yes' if self.valves.public_key and self.valves.public_key != 'your-public-key-here' else 'No'}"
)
# Initialize Langfuse client for v3.2.1
self.langfuse = Langfuse(
secret_key=self.valves.secret_key,
public_key=self.valves.public_key,
host=self.valves.host,
debug=self.valves.debug,
httpx_client=httpx.Client(verify=self.valves.ssl_verify),
)
# Test authentication
try:
self.langfuse.auth_check()
self.log(
f"Langfuse client initialized and authenticated successfully. Connected to host: {self.valves.host}")
except Exception as e:
self.log(f"Auth check failed: {e}")
self.log(f"Failed host: {self.valves.host}")
self.langfuse = None
return
except Exception as auth_error:
if (
"401" in str(auth_error)
or "unauthorized" in str(auth_error).lower()
or "credentials" in str(auth_error).lower()
):
self.log(f"Langfuse credentials incorrect: {auth_error}")
self.langfuse = None
return
except Exception as e:
self.log(f"Langfuse initialization error: {e}")
self.langfuse = None
def _build_tags(self, task_name: str) -> list:
"""
Builds a list of tags based on valve settings, ensuring we always add
'open-webui' and skip user_response / llm_response from becoming tags themselves.
"""
tags_list = []
if self.valves.insert_tags:
# Always add 'open-webui'
tags_list.append("open-webui")
# Add the task_name if it's not one of the excluded defaults
if task_name not in ["user_response", "llm_response"]:
tags_list.append(task_name)
return tags_list
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
self.log("Langfuse Filter INLET called")
# Check Langfuse client status
if not self.langfuse:
self.log("[WARNING] Langfuse client not initialized - Skipped")
return body
self.log(f"Inlet function called with body: {body} and user: {user}")
metadata = body.get("metadata", {})
chat_id = metadata.get("chat_id", str(uuid.uuid4()))
# Handle temporary chats
if chat_id == "local":
session_id = metadata.get("session_id")
chat_id = f"temporary-session-{session_id}"
metadata["chat_id"] = chat_id
body["metadata"] = metadata
# Extract and store both model name and ID if available
model_info = metadata.get("model", {})
model_id = body.get("model")
# Store model information for this chat
if chat_id not in self.model_names:
self.model_names[chat_id] = {"id": model_id}
else:
self.model_names[chat_id]["id"] = model_id
if isinstance(model_info, dict) and "name" in model_info:
self.model_names[chat_id]["name"] = model_info["name"]
self.log(f"Stored model info - name: '{model_info['name']}', id: '{model_id}' for chat_id: {chat_id}")
required_keys = ["model", "messages"]
missing_keys = [key for key in required_keys if key not in body]
if missing_keys:
error_message = f"Error: Missing keys in the request body: {', '.join(missing_keys)}"
self.log(error_message)
raise ValueError(error_message)
user_email = user.get("email") if user else None
# Defaulting to 'user_response' if no task is provided
task_name = metadata.get("task", "user_response")
# Build tags
tags_list = self._build_tags(task_name)
if chat_id not in self.chat_traces:
self.log(f"Creating new trace for chat_id: {chat_id}")
try:
# Create trace using Langfuse v3 API with complete data
trace_metadata = {
**metadata,
"user_id": user_email,
"session_id": chat_id,
"userId": user_email,
"sessionId": chat_id,
"interface": "open-webui",
}
# Create trace with all necessary information
trace = self.langfuse.start_span(
name=f"chat:{chat_id}",
input=body,
metadata=trace_metadata
)
# Set additional trace attributes
try:
trace.update_trace(
user_id=user_email,
session_id=chat_id,
userId=user_email,
sessionId=chat_id,
tags=tags_list if tags_list else None,
input=body,
metadata=trace_metadata,
)
except Exception as e:
self.log(f"Failed to update trace attributes, trying alternative: {e}")
trace.update_trace(
user_id=user_email,
session_id=chat_id,
tags=tags_list if tags_list else None,
input=body,
metadata=trace_metadata,
)
self.chat_traces[chat_id] = trace
self.log(f"Successfully created trace for chat_id: {chat_id}")
except Exception as e:
self.log(f"Failed to create trace: {e}")
return body
else:
trace = self.chat_traces[chat_id]
self.log(f"Reusing existing trace for chat_id: {chat_id}")
# Update trace with current metadata and tags
trace_metadata = {
**metadata,
"user_id": user_email,
"userId": user_email,
"session_id": chat_id,
"sessionId": chat_id,
"interface": "open-webui",
}
trace.update_trace(
tags=tags_list if tags_list else None,
metadata=trace_metadata,
)
# Update metadata with type
metadata["type"] = task_name
metadata["interface"] = "open-webui"
# Log user input as event
try:
trace = self.chat_traces[chat_id]
# Create complete event metadata
event_metadata = {
**metadata,
"type": "user_input",
"interface": "open-webui",
"user_id": user_email,
"session_id": chat_id,
"userId": user_email,
"sessionId": chat_id,
"event_id": str(uuid.uuid4()),
}
event_span = trace.start_span(
name=f"user_input:{str(uuid.uuid4())}",
metadata=event_metadata,
input=body["messages"],
)
event_span.end()
self.log(f"User input event logged for chat_id: {chat_id}")
except Exception as e:
self.log(f"Failed to log user input event: {e}")
return body
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
self.log("Langfuse Filter OUTLET called")
# Check Langfuse client status
if not self.langfuse:
self.log("[WARNING] Langfuse client not initialized - Skipped")
return body
self.log(f"Outlet function called with body: {body}")
chat_id = body.get("chat_id")
# Handle temporary chats
if chat_id == "local":
session_id = body.get("session_id")
chat_id = f"temporary-session-{session_id}"
metadata = body.get("metadata", {})
# Defaulting to 'llm_response' if no task is provided
task_name = metadata.get("task", "llm_response")
# Build tags
tags_list = self._build_tags(task_name)
if chat_id not in self.chat_traces:
self.log(f"[WARNING] No matching trace found for chat_id: {chat_id}, attempting to re-register.")
# Re-run inlet to register if somehow missing
return await self.inlet(body, user)
self.chat_traces[chat_id]
assistant_message = get_last_assistant_message(body["messages"])
assistant_message_obj = get_last_assistant_message_obj(body["messages"])
self.log(f"Assistant message obj extracted: {assistant_message_obj}")
usage = None
cost = None
if assistant_message_obj:
info = assistant_message_obj.get("usage", {})
self.log(f"Usage info extracted: {info}")
if isinstance(info, dict):
input_tokens = info.get("prompt_eval_count") or info.get("prompt_tokens")
output_tokens = info.get("eval_count") or info.get("completion_tokens")
cost = info.get("cost")
if input_tokens is not None and output_tokens is not None:
usage = {
"input": input_tokens,
"output": output_tokens,
"unit": "TOKENS",
}
self.log(f"Usage data extracted: {usage}")
# Update the trace with complete output information
trace = self.chat_traces[chat_id]
metadata["type"] = task_name
metadata["interface"] = "open-webui"
# Create complete trace metadata with all information
complete_trace_metadata = {
**metadata,
"user_id": user.get("email") if user else None,
"userId": user.get("email") if user else None,
"session_id": chat_id,
"sessionId": chat_id,
"interface": "open-webui",
"task": task_name,
}
# Update trace with output and complete metadata
trace.update_trace(
output=assistant_message,
metadata=complete_trace_metadata,
tags=tags_list if tags_list else None,
)
# Outlet: Always create LLM generation (this is the LLM response)
# Determine which model value to use based on the use_model_name valve
model_id = self.model_names.get(chat_id, {}).get("id", body.get("model"))
model_name = self.model_names.get(chat_id, {}).get("name", "unknown")
# Pick primary model identifier based on valve setting
model_value = (
model_name
if self.valves.use_model_name_instead_of_id_for_generation
else model_id
)
# Add both values to metadata regardless of valve setting
metadata["model_id"] = model_id
metadata["model_name"] = model_name
# Create LLM generation for the response
try:
trace = self.chat_traces[chat_id]
# Create complete generation metadata
generation_metadata = {
**complete_trace_metadata,
"type": "llm_response",
"model_id": model_id,
"model_name": model_name,
"generation_id": str(uuid.uuid4()),
}
generation = trace.start_generation(
name=f"llm_response:{str(uuid.uuid4())}",
model=model_value,
input=body["messages"],
output=assistant_message,
metadata=generation_metadata,
)
# Update with usage if available
if usage:
generation.update(usage_details=usage)
if cost:
generation.update(cost_details={"total_cost": cost, "total": cost})
generation.end()
self.log(f"LLM generation completed for chat_id: {chat_id}")
except Exception as e:
self.log(f"Failed to create LLM generation: {e}")
# Flush data to Langfuse
try:
if self.langfuse:
self.langfuse.flush()
self.log("Langfuse data flushed")
except Exception as e:
self.log(f"Failed to flush Langfuse data: {e}")
return body
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment