Skip to content

Instantly share code, notes, and snippets.

@avionbg
Last active February 5, 2018 22:57
Show Gist options
  • Save avionbg/e51da07aed43e95c52aa870493041f75 to your computer and use it in GitHub Desktop.
Save avionbg/e51da07aed43e95c52aa870493041f75 to your computer and use it in GitHub Desktop.
Test performance between recursion and ahead calculation with looping trough collections
import numpy as np
import timeit
from collections import deque
NUMBER_OF_MINES = 10 ** 5
# Keep this low to prevent RuntimeError: maximum recursion depth exceeded
# (we can increase recursion depth, but it's ok also to avoid it just for the test)
MAX_BLAST_RADIUS = 200
MAX_COORDINATE_XY = 700000
def generateMines():
# Generate array of coordinates (x, y)
coordinates = np.random.randint(MAX_COORDINATE_XY, size=(NUMBER_OF_MINES,2))
# Generate array of random blasts
radiuses = np.random.randint(MAX_BLAST_RADIUS, size=NUMBER_OF_MINES)
# Now insert blast to each coordinate array and convert numpy list to simple one and return
return np.insert(coordinates, 2, radiuses, 1).tolist()
mines = generateMines()
def within_blast_radius(x1, y1, blast_radius, x2, y2):
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) <= (blast_radius ** 2)
#### NORMAL CODE ####
def explode_mine(mines, mine, exploded):
destroyed = 0
for rest in mines:
if rest != mine and not rest in exploded:
if within_blast_radius(mine[0], mine[1], mine[2], rest[0], rest[1]):
exploded.append(rest)
destroyed += 1
destroyed += explode_mine(mines, rest, exploded)
return destroyed
def calculateChainReaction(mines):
result = []
for mine in mines:
result.append(explode_mine(mines, mine, [mine]) + 1)
maxExploded = max(result)
indexesOfMax = [i for i, j in enumerate(result) if j == maxExploded]
print ('Max exploded mines: %s \nMines with maximum explosion: %s' %
(maxExploded, ','.join(map(str, [x+1 for x in indexesOfMax]))))
#### OPTIMIZED CODE ####
def collect(token, tree):
"returns a list of every mine in radius"
visited = set()
child_list = []
to_crawl = deque([token])
while to_crawl:
current = to_crawl.popleft()
if current in visited:
continue
visited.add(current)
child_list.append(current)
node_children = tree[current]
to_crawl.extend(node_children)
return child_list
def calculateOptimized(mines):
# First we detect mines in radius of each mine and store them as dict of indexes
explosionMap = {}
for idx, mine in enumerate(mines):
explosionMap[idx] = []
for cidx, compareMine in enumerate(mines):
if compareMine != mine:
# First we do the simple test without expencive calculation (is the point in a square)
if mine[0] + mine[2] > compareMine[0] and mine[1] + mine[2] > compareMine[1]:
# Now we test it more precisely
if within_blast_radius(mine[0], mine[1], mine[2], compareMine[0], compareMine[1]):
explosionMap[idx].append(cidx)
result = []
# Now that we have all calculations done, we can collect recursive explosions by iterating trough the indexes
for idx in explosionMap:
bombs = collect(idx, explosionMap)
result.append(len(bombs))
maxExploded = max(result)
indexesOfMax = [i for i, j in enumerate(result) if j == maxExploded]
print ('Max exploded mines: %s \nMines with maximum explosion: %s' %
(maxExploded, ','.join(map(str, [x+1 for x in indexesOfMax]))))
#### RUNNERS ####
def runOptimized():
# Cloning the list in order to have exact starting point for both algorithms
cloned = np.copy(mines).tolist()
cloned = sorted(cloned, key=lambda x: x[2])
calculateOptimized(cloned)
def run():
cloned = np.copy(mines).tolist()
cloned = sorted(cloned, key=lambda x: x[2])
calculateChainReaction(cloned)
if __name__ == '__main__':
res = timeit.timeit(run, number=1)
print "Time taken:", res
res = timeit.timeit(runOptimized, number=1)
print "Time taken:", res
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment