Created
October 13, 2016 21:15
-
-
Save awjuliani/fb10d1ea206fab25f946512d959e3894 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import tensorflow.contrib.slim as slim | |
total_layers = 25 #Specify how deep we want our network | |
units_between_stride = total_layers / 5 | |
def denseBlock(input_layer,i,j): | |
with tf.variable_scope("dense_unit"+str(i)): | |
nodes = [] | |
a = slim.conv2d(input_layer,64,[3,3],normalizer_fn=slim.batch_norm) | |
nodes.append(a) | |
for z in range(j): | |
b = slim.conv2d(tf.concat(3,nodes),64,[3,3],normalizer_fn=slim.batch_norm) | |
nodes.append(b) | |
return b | |
tf.reset_default_graph() | |
input_layer = tf.placeholder(shape=[None,32,32,3],dtype=tf.float32,name='input') | |
label_layer = tf.placeholder(shape=[None],dtype=tf.int32) | |
label_oh = slim.layers.one_hot_encoding(label_layer,10) | |
layer1 = slim.conv2d(input_layer,64,[3,3],normalizer_fn=slim.batch_norm,scope='conv_'+str(0)) | |
for i in range(5): | |
layer1 = denseBlock(layer1,i,units_between_stride) | |
layer1 = slim.conv2d(layer1,64,[3,3],stride=[2,2],normalizer_fn=slim.batch_norm,scope='conv_s_'+str(i)) | |
top = slim.conv2d(layer1,10,[3,3],normalizer_fn=slim.batch_norm,activation_fn=None,scope='conv_top') | |
output = slim.layers.softmax(slim.layers.flatten(top)) | |
loss = tf.reduce_mean(-tf.reduce_sum(label_oh * tf.log(output) + 1e-10, reduction_indices=[1])) | |
trainer = tf.train.AdamOptimizer(learning_rate=0.001) | |
update = trainer.minimize(loss) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Maybe:
tf.concat(3,nodes)
-->
tf.concat(nodes,3)
?