Last active
November 2, 2024 16:06
-
-
Save awni/cf42588b8c084c3d93d7373b604c7f9c to your computer and use it in GitHub Desktop.
A minimal, fast implementation of Llama 3.1 in MLX.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
A minimal, fast example generating text with Llama 3.1 in MLX. | |
To run, install the requirements: | |
pip install -U mlx transformers fire | |
Then generate text with: | |
python l3min.py "How tall is K2?" | |
""" | |
import fire | |
import json | |
import glob | |
from huggingface_hub import snapshot_download | |
import mlx.core as mx | |
import mlx.nn as nn | |
from pathlib import Path | |
import time | |
from transformers import AutoTokenizer | |
from types import SimpleNamespace | |
class DynamicNTKScalingRoPE(nn.Module): | |
def __init__( | |
self, | |
dims, | |
rope_scaling, | |
max_position_embeddings=2048, | |
base=10000, | |
): | |
super().__init__() | |
self.dims = dims | |
self.max_position_embeddings = max_position_embeddings | |
factor = rope_scaling["factor"] | |
low_freq_factor = rope_scaling["low_freq_factor"] | |
high_freq_factor = rope_scaling["high_freq_factor"] | |
old_context_len = rope_scaling["original_max_position_embeddings"] | |
low_freq_wavelen = old_context_len / low_freq_factor | |
high_freq_wavelen = old_context_len / high_freq_factor | |
freqs = base ** (mx.arange(0, self.dims, 2) / self.dims) | |
wavelens = 2 * mx.pi * freqs | |
freqs = mx.where(wavelens > low_freq_wavelen, freqs * factor, freqs) | |
is_medium_freq = (wavelens > high_freq_wavelen) & (wavelens < low_freq_wavelen) | |
smooth_factors = (old_context_len / wavelens - low_freq_factor) / ( | |
high_freq_factor - low_freq_factor | |
) | |
smooth_freqs = freqs / ((1 - smooth_factors) / factor + smooth_factors) | |
self._freqs = mx.where(is_medium_freq, smooth_freqs, freqs) | |
def __call__(self, x, offset=0): | |
return mx.fast.rope( | |
x, | |
self.dims, | |
traditional=False, | |
base=None, | |
scale=1.0, | |
offset=offset, | |
freqs=self._freqs, | |
) | |
class Attention(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
dim = args.hidden_size | |
self.n_heads = n_heads = args.num_attention_heads | |
self.n_kv_heads = n_kv_heads = args.num_key_value_heads | |
head_dim = args.hidden_size // n_heads | |
self.scale = head_dim ** (-0.5) | |
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False) | |
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) | |
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False) | |
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False) | |
self.rope = DynamicNTKScalingRoPE( | |
dims=head_dim, | |
rope_scaling=args.rope_scaling, | |
max_position_embeddings=args.max_position_embeddings, | |
base=args.rope_theta, | |
) | |
def __call__(self, x, mask=None, cache=None): | |
B, L, _ = x.shape | |
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x) | |
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3) | |
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) | |
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3) | |
if cache is not None: | |
key_cache, value_cache = cache | |
queries = self.rope(queries, offset=key_cache.shape[2]) | |
keys = self.rope(keys, offset=key_cache.shape[2]) | |
keys = mx.concatenate([key_cache, keys], axis=2) | |
values = mx.concatenate([value_cache, values], axis=2) | |
else: | |
queries = self.rope(queries) | |
keys = self.rope(keys) | |
output = mx.fast.scaled_dot_product_attention( | |
queries, keys, values, mask=mask, scale=self.scale | |
) | |
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1) | |
return self.o_proj(output), (keys, values) | |
class MLP(nn.Module): | |
def __init__(self, dim, hidden_dim): | |
super().__init__() | |
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False) | |
self.down_proj = nn.Linear(hidden_dim, dim, bias=False) | |
self.up_proj = nn.Linear(dim, hidden_dim, bias=False) | |
def __call__(self, x): | |
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x)) | |
class TransformerBlock(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.self_attn = Attention(args) | |
self.mlp = MLP(args.hidden_size, args.intermediate_size) | |
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | |
self.post_attention_layernorm = nn.RMSNorm( | |
args.hidden_size, eps=args.rms_norm_eps | |
) | |
def __call__(self, x, mask=None, cache=None): | |
r, cache = self.self_attn(self.input_layernorm(x), mask, cache) | |
h = x + r | |
out = h + self.mlp(self.post_attention_layernorm(h)) | |
return out, cache | |
class LlamaModel(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size) | |
self.layers = [ | |
TransformerBlock(args=args) for _ in range(args.num_hidden_layers) | |
] | |
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps) | |
def __call__(self, inputs, cache=None): | |
h = self.embed_tokens(inputs) | |
mask = None | |
if h.shape[1] > 1: | |
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1]) | |
mask = mask.astype(h.dtype) | |
if cache is None: | |
cache = [None] * len(self.layers) | |
for e, layer in enumerate(self.layers): | |
h, cache[e] = layer(h, mask, cache[e]) | |
return self.norm(h), cache | |
class Model(nn.Module): | |
def __init__(self, args): | |
super().__init__() | |
self.model = LlamaModel(args) | |
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False) | |
def __call__(self, inputs, cache=None): | |
out, cache = self.model(inputs, cache) | |
return self.lm_head(out), cache | |
def load(hf_repo): | |
model_path = Path( | |
snapshot_download( | |
repo_id=hf_repo, | |
allow_patterns=["*.json", "*.safetensors"], | |
) | |
) | |
with open(model_path / "config.json", "r") as f: | |
config = json.load(f) | |
weight_files = glob.glob(str(model_path / "model*.safetensors")) | |
weights = {} | |
for wf in weight_files: | |
weights.update(mx.load(wf)) | |
model = Model(SimpleNamespace(**config)) | |
if (quantization := config.get("quantization", None)) is not None: | |
nn.quantize(model, **quantization) | |
model.load_weights(list(weights.items())) | |
mx.eval(model.parameters()) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
tokenizer.decode([0]) | |
return model, tokenizer | |
def generate_step(prompt, model): | |
cache = None | |
def _step(y): | |
nonlocal cache | |
logits, cache = model(y, cache=cache) | |
return mx.argmax(logits[:, -1, :], axis=-1) | |
y = _step(prompt) | |
mx.async_eval(y) | |
while True: | |
next_y = _step(y[None]) | |
mx.async_eval(next_y) | |
yield y.item() | |
y = next_y | |
def generate( | |
prompt, | |
model="mlx-community/Meta-Llama-3.1-8B-Instruct-4bit", | |
max_tokens=128, | |
): | |
print("[INFO] Loading model from disk.") | |
model, tokenizer = load(model) | |
prompt = tokenizer.apply_chat_template( | |
[{"role": "user", "content": prompt}], | |
add_generation_prompt=True, | |
return_tensors="mlx", | |
) | |
print("[INFO] Starting generation...") | |
tic = time.time() | |
s = 0 | |
tokens = [] | |
for token, n in zip(generate_step(prompt, model), range(max_tokens)): | |
tokens.append(token) | |
if n == 0: | |
prompt_tps = prompt.size / (time.time() - tic) | |
tic = time.time() | |
if token == tokenizer.eos_token_id: | |
break | |
words = tokenizer.decode(tokens) | |
print(words[s:], end="", flush=True) | |
if words[-1] == "\n": | |
tokens = [] | |
s = 0 | |
else: | |
s = len(words) | |
print(tokenizer.decode(tokens)[s:], flush=True) | |
gen_tps = (n + 1) / (time.time() - tic) | |
print("=" * 10) | |
print(f"Prompt: {prompt_tps:.3f} tokens-per-sec") | |
print(f"Generation: {gen_tps:.3f} tokens-per-sec") | |
if __name__ == "__main__": | |
fire.Fire(generate) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment