Last active
April 29, 2024 19:17
-
-
Save awwalm/ea56394332880af846e942733670dec0 to your computer and use it in GitHub Desktop.
The Sieve of Eratosthenes: Empirical Analysis and Visualization of Various Approaches
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import matplotlib.pyplot as plt | |
def naive_sieve(m: int): | |
BA = [True] * m | |
for i, k in zip(range(2, m + 1), range(len(BA))): | |
if BA[k] is False: continue | |
for j in range(2, i): | |
if i % j == 0: | |
BA[k] = False | |
f = k + j | |
while f < len(BA): | |
BA[f] = False | |
f += j | |
break | |
return [i for i,j in zip(range(2, m + 1), BA) if j is True] | |
def suboptimal_sieve(m: int): | |
BA = [True] * m | |
for i, k in zip(range(2, m + 1), range(2, len(BA))): | |
if BA[k] is False: continue | |
for j in range(i**2, m, i): | |
BA[j] = False | |
return [i for i,j in zip(range(2, m + 1), BA[2:]) if j is True] | |
def fast_sieve(m: int): | |
BA = [True] * m | |
rtm = int(m**(1/2)) + 1 | |
for i in range(2, len(BA)): | |
if BA[i]: | |
yield i | |
if i < rtm: | |
f = i | |
while f < len(BA): | |
BA[f] = False | |
f += i | |
def pidelport_sieve(limit): | |
a = [True] * limit | |
a[0] = a[1] = False | |
for (i, isprime) in enumerate(a): | |
if isprime: | |
yield i | |
for n in range(i*i, limit, i): | |
a[n] = False | |
def visualize_performance(): | |
yt_naive = [] | |
yt_suboptimal = [] | |
yt_fast = [] | |
yt_pidelport = [] | |
xd = [x for x in range(100, 4501, 100)] | |
for dt in xd: | |
for f in [ | |
[naive_sieve, yt_naive], | |
[suboptimal_sieve, yt_suboptimal], | |
[fast_sieve, yt_fast], | |
[pidelport_sieve, yt_pidelport] | |
]: | |
t1 = time.time() | |
f[0](dt) | |
t2 = time.time() | |
f[1].append(t2-t1) | |
fig = plt.figure() | |
gs = fig.add_gridspec(1, 2) | |
line, box = gs.subplots(sharey=False) | |
# Line graph | |
line.plot(xd, yt_naive, label="Naive SOE") | |
line.plot(xd, yt_suboptimal, label="Suboptimal SOE") | |
line.plot(xd, yt_fast, label="Fast SOE") | |
line.plot(xd, yt_pidelport, label="Pi Delport's SOE") | |
line.set(xlabel="\nRange of Primes Computed", ylabel="Time Taken (Seconds)\n") | |
line.set_title("Benchmark per Range") | |
line.legend() | |
# Box plot | |
box.boxplot([yt_naive, yt_suboptimal, yt_fast, yt_pidelport]) | |
box.set(xlabel="\nSOE Algorithms", xticklabels=["Naive", "Suboptimal", "Fast", "Pi Delport's"]) | |
box.set_title("Average Benchmark Duration") | |
plt.suptitle("Performance Comparison of \nVarious Implementations of the Sieve of Eratosthenes") | |
plt.show() | |
if __name__ == '__main__': | |
visualize_performance() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment