Use a virtualenv if possible.
- Install the requirements:
pip install -r requirements.txt
- Set the two environmental variables GHTOKEN and BLEEPBLOOP:
GHTOKEN = https://github.com/settings/tokens
BLEEPBLOOP = WHATEVER_YOU_WANT,_USED_FOR_SALT
import numpy as np | |
import matplotlib.pyplot as plt | |
with open('samples.bin', 'rb') as f: | |
raw_data = np.fromfile(f, dtype=np.uint8) | |
iq_data = raw_data.astype(np.float32) - 127.5 | |
iq_data /= 127.5 | |
i_data = iq_data[0::2] |
>>> import string | |
>>> string.letters | |
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' | |
>>> help(string) | |
>>> string.letters | |
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' | |
>>> reload(string) | |
<module 'string' from '/usr/lib64/python2.7/string.pyc'> | |
>>> string.letters |
Module | Status | New Location | Compatibility Module | Documentation | |
---|---|---|---|---|---|
tf.AUTO_REUSE | Removed | tf.compat.v1.AUTO_REUSE | N/A | ||
tf.AttrValue | Removed | tf.compat.v1.AttrValue | https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/AttrValue | ||
tf.COMPILER_VERSION | Removed | tf.compat.v1.COMPILER_VERSION | N/A | ||
tf.CXX11_ABI_FLAG | Removed | tf.compat.v1.CXX11_ABI_FLAG | N/A | ||
tf.ConditionalAccumulator | Removed | tf.compat.v1.ConditionalAccumulator | https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/ConditionalAccumulator | ||
tf.ConditionalAccumulatorBase | Removed | tf.compat.v1.ConditionalAccumulatorBase | https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/ConditionalAccumulatorBase | ||
tf.ConfigProto | Removed | tf.compat.v1.ConfigProto | https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/ConfigProto | ||
tf.DeviceSpec | Removed | tf.compat.v1.DeviceSpec | https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/DeviceSpec | ||
tf.Dimension | Removed | tf.compat.v1.Dimension | https://www.tensorflow.org/versions/r1.12/api_docs/python/tf/Dime |
import tensorflow as tf | |
import numpy as np | |
splits = [1, 4, 4, 7, 8, 8] | |
x = tf.RaggedTensor.from_row_splits(values=np.random.choice(20,10).tolist(), row_splits=splits) | |
y = tf.RaggedTensor.from_row_splits(values=np.random.choice(20,10).tolist(), row_splits=splits) | |
print((x+y).to_list()) |
import numpy as np | |
import tensorflow as tf | |
np.random.seed(42) | |
x = tf.constant(np.random.rand(3,3)) | |
y = tf.constant(np.random.rand(3,3)) | |
@tf.function | |
def matmul(x, y): |
import numpy as np | |
import tensorflow as tf | |
np.random.seed(42) | |
x = tf.constant(np.random.rand(3,3)) | |
y = tf.constant(np.random.rand(3,3)) | |
result = tf.matmul(x, y) | |
tf.global_variables_initializer() |