Last active
November 27, 2025 04:32
-
-
Save ayamflow/ad1c9d7b9632e26632992cc3e7b239b2 to your computer and use it in GitHub Desktop.
RMF (Rotation-minimizing frames) for consistent curve normals
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| // Compute rotation-minimizing frames to get proper orientation for the instances | |
| // based on the Wang & al paper https://www.microsoft.com/en-us/research/wp-content/uploads/2016/12/Computation-of-rotation-minimizing-frames.pdf | |
| // https://stackoverflow.com/a/25458216/2349765 | |
| // https://pomax.github.io/bezierinfo/#pointvectors3d | |
| import { CubicBezierCurve3, CurvePath, Vector3 } from 'three'; | |
| const up = new Vector3(0, 1, 0); | |
| const tempVec3 = new Vector3(); | |
| function computeRMFrames(curve, step) { | |
| const frames = [getVectorFrame(curve, 0)]; | |
| for (let t0 = 0; t0 < 1; t0 += step) { | |
| const x0 = frames[frames.length - 1]; | |
| const t1 = Math.min(1, t0 + step); | |
| const frame = getRMFrame(x0, getVectorFrame(curve, t1)); | |
| frames.push(frame); | |
| } | |
| // recompute first frame | |
| frames[0] = getRMFrame(frames[1], frames[0]); | |
| return frames; | |
| } | |
| function getVectorFrame(curve, t) { | |
| const origin = curve.getPointAt(t); // use getPointAt/getTangentAt if you want equidistant points on the curve | |
| const tanget = curve.getTangentAt(t); | |
| const normal = new Vector3().crossVectors(up, tangent).normalize(); | |
| const axis = new Vector3().crossVectors(tangent, normal).normalize(); | |
| return { | |
| origin, | |
| tangent, | |
| normal, | |
| axis, | |
| }; | |
| } | |
| const v1 = new Vector3(); | |
| const v2 = new Vector3(); | |
| const riL = new Vector3(); | |
| const tiL = new Vector3(); | |
| // check the paper or attached links for more understanding of this. I just ported it | |
| function getRMFrame(x0, x1) { | |
| v1.subVectors(x1.origin, x0.origin); | |
| const c1 = v1.dot(v1); | |
| riL.subVectors(x0.axis, v1.clone().scale((2 / c1) * v1.dot(x0.axis))); | |
| tiL.subVectors(x0.tangent, v1.clone().scale((2 / c1) * v1.dot(x0.tangent))); | |
| v2.subVectors(x1.tangent, tiL); | |
| const c2 = v2.dot(v2); | |
| x1.axis.subVectors(riL, v2.clone().scale((2 / c2) * v2.dot(riL))); | |
| x1.normal.crossVectors(x1.axis, x1.tangent); | |
| return x1; | |
| } | |
| // How to use | |
| // Create a threejs Curve/CurvePath | |
| const curve = new CurvePath(); | |
| const count = ... // however many points you need on the curve | |
| const step = curve.length / count / curve.length; | |
| const frames = computeRMFrames(curve, step); | |
| for (let i = 0; i < count; i++) { | |
| const frame = frames[i]; | |
| const { origin, tangent, normal, axis } = frame; | |
| // create rotation matrix for the frame | |
| const matrix = new Matrix3( | |
| normal.x, | |
| normal.y, | |
| normal.z, | |
| axis.x, | |
| axis.y, | |
| axis.z, | |
| tangent.x, | |
| tangent.y, | |
| tangent.z, | |
| ); | |
| const rotation = new Quaternion().setFromRotationMatrix(new Matrix4().setFromMatrix3(matrix).normalize(); | |
| object.quaternion.copy(rotation); | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment