Skip to content

Instantly share code, notes, and snippets.

@ayan-b
Last active June 12, 2019 12:09
Show Gist options
  • Save ayan-b/6d889874a3ea3b9225743972f14779bd to your computer and use it in GitHub Desktop.
Save ayan-b/6d889874a3ea3b9225743972f14779bd to your computer and use it in GitHub Desktop.
download
from __future__ import print_function
import time
from xena_gdc_etl import xena_dataset, gdc
GDC_XENA_COHORT = [
# 'TCGA-BRCA', #
# 'TCGA-LUAD', #
# 'TCGA-UCEC', #
# 'TCGA-LGG', #
# 'TCGA-HNSC', #
# 'TCGA-PRAD', #
# 'TCGA-LUSC', #
# 'TCGA-THCA', #
# 'TCGA-SKCM', #
# 'TCGA-OV', #
# 'TCGA-STAD', #
# 'TCGA-COAD', #
# 'TCGA-BLCA', #
# 'TCGA-GBM', #
# 'TCGA-LIHC', #
# 'TCGA-KIRC', #
# 'TCGA-CESC', #
# 'TCGA-KIRP', #
# 'TCGA-SARC', #
# 'TCGA-ESCA', #
# 'TCGA-PAAD', #
# 'TCGA-PCPG', #
# 'TCGA-READ', #
# 'TCGA-TGCT', #
'TCGA-LAML', #
'TCGA-THYM', #
'TCGA-ACC', #
'TCGA-MESO', #
'TCGA-UVM', #
'TCGA-KICH', #
'TCGA-UCS', #
'TCGA-CHOL', #
'TCGA-DLBC', #
]
COHORT_M27 = [
"TCGA-OV",
"TCGA-KIRC",
"TCGA-BRCA",
"TCGA-GBM",
"TCGA-COAD",
"TCGA-LUSC",
"TCGA-LUAD",
"TCGA-LAML",
"TCGA-UCEC",
"TCGA-READ",
"TCGA-STAD",
"TCGA-KIRP",
]
TARGET_DATA = [
"TARGET-NBL", #
"TARGET-AML", #
"TARGET-WT", #
"TARGET-OS", #
"TARGET-ALL-P3", #
"TARGET-RT", #
"TARGET-CCSK", #
]
xena_dtypes = [
'methylation27', # Methylation Beta Value
'masked_cnv', # Masked Copy Number Segment
'mirna', # miRNA Expression Quantification
'muse_snv', # MuSE Variant Aggregation and Masking
'mutect2_snv', # MuTect2 Variant Aggregation and Masking
'somaticsniper_snv', # SomaticSniper Variant Aggregation and Masking
'varscan2_snv', # VarScan2 Variant Aggregation and Masking
'htseq_counts', # HTSeq - Counts
'htseq_fpkm', # HTSeq - FPKM
'htseq_fpkm-uq', # HTSeq - FPKM-UQ
'methylation450', # Illumina Human Methylation 450
]
# GDC_XENA_COHORT = ["TCGA-BRCA"]
for project in GDC_XENA_COHORT:
for xena_dtype in xena_dtypes:
if xena_dtype == "methylation27" and project not in COHORT_M27:
continue
dataset = xena_dataset.GDCOmicset(
projects=project,
root_dir=r"./genomic-data",
xena_dtype=xena_dtype,
)
dataset.download().transform().metadata()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment