Last active
October 15, 2022 15:55
-
-
Save ayan4m1/92e3e186a0f5f1fe50baf4475319e32f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import cv2 | |
import RRDBNet_arch as arch | |
import numpy as np | |
import BLIP.models.blip | |
import os | |
from torchvision import transforms | |
from torchvision.transforms.functional import InterpolationMode | |
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, LMSDiscreteScheduler | |
from torch import autocast | |
from PIL import Image, PngImagePlugin | |
from flask import Flask, request | |
app = Flask(__name__) | |
sd_model_path = '../models/stable-diffusion-v1-4' | |
# sd_model_path = '../models/waifu-diffusion' | |
esrgan_model_path = './4x_foolhardy_Remacri_out.pth' | |
device = torch.device('cuda') | |
# create Stable Diffusion pipelines | |
lms = LMSDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule='scaled_linear' | |
) | |
text_pipe = StableDiffusionPipeline.from_pretrained(sd_model_path, scheduler=lms, revision='fp16', torch_dtype=torch.float16) | |
text_pipe = text_pipe.to(device) | |
text_pipe.enable_attention_slicing() | |
image_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(sd_model_path, scheduler=lms, revision='fp16', torch_dtype=torch.float16) | |
image_pipe = image_pipe.to(device) | |
image_pipe.enable_attention_slicing() | |
# create ESRGAN model | |
upscale_model = arch.RRDBNet(3, 3, 64, 23, gc=32) | |
upscale_model.load_state_dict(torch.load(esrgan_model_path), strict=True) | |
upscale_model.eval() | |
upscale_model = upscale_model.to(device) | |
# create interrogation model | |
blip_num_beams = 32 | |
blip_min_length = 4 | |
blip_max_length = 30 | |
blip_image_eval_size = 384 | |
blip_model_path = './model_base_caption_capfilt_large.pth' | |
blip_config_path = os.path.join("./", "BLIP", "configs", "med_config.json") | |
blip_model = BLIP.models.blip.blip_decoder(pretrained=blip_model_path, image_size=blip_image_eval_size, vit='base', med_config=blip_config_path).half() | |
blip_model = blip_model.to(device) | |
@app.route('/txt2img', methods=['POST']) | |
def txt2img(): | |
prompt = request.form['prompt'] | |
out_file = request.form['outFile'] | |
seed = int(request.form['seed']) | |
height = int(request.form['height']) | |
width = int(request.form['width']) | |
steps = int(request.form['steps']) | |
generator = torch.Generator('cuda').manual_seed(seed) | |
# run iterations and save output | |
with autocast("cuda"): | |
image = text_pipe( | |
prompt=prompt, | |
num_inference_steps=steps, | |
generator=generator, | |
height=height, | |
width=width | |
)["sample"] | |
# embed metadata in exif | |
pnginfo = PngImagePlugin.PngInfo() | |
pnginfo.add_text('parameters', f'Prompt: {prompt} Seed: {seed} Steps: {steps}') | |
image.save(out_file, 'PNG', pnginfo=pnginfo) | |
return 'OK' | |
@app.route('/img2img', methods=['POST']) | |
def img2img(): | |
prompt = request.form['prompt'] | |
in_file = request.form['inFile'] | |
out_file = request.form['outFile'] | |
seed = int(request.form['seed']) | |
steps = int(request.form['steps']) | |
strength = float(request.form['strength']) | |
generator = torch.Generator('cuda').manual_seed(seed) | |
in_image = Image.open(in_file).convert('RGB') | |
# patches to unet_blocks.py in diffusers needed for this to work | |
width, height = in_image.size | |
aspect_ratio = width / height | |
if max(width, height) == width: | |
width = 512 | |
height = round(64 / aspect_ratio) * 8 | |
else: | |
height = 512 | |
width = round(64 / aspect_ratio) * 8 | |
in_image = in_image.resize((width, height), resample=Image.Resampling.LANCZOS) | |
# run iterations and save output | |
with autocast("cuda"): | |
image = image_pipe( | |
prompt=prompt, | |
init_image=in_image, | |
strength=strength, | |
num_inference_steps=steps, | |
generator=generator | |
)["sample"] | |
# embed metadata in exif | |
pnginfo = PngImagePlugin.PngInfo() | |
pnginfo.add_text('parameters', f'Prompt: {prompt} Seed: {seed} Steps: {steps} Strength: {strength}') | |
image.save(out_file, 'PNG', pnginfo=pnginfo) | |
return 'OK' | |
@app.route('/upscale', methods=['POST']) | |
def upscale(): | |
in_file = request.form['inFile'] | |
out_file = request.form['outFile'] | |
# read image | |
img = cv2.imread(in_file, cv2.IMREAD_COLOR) | |
img = img * 1.0 / 255 | |
img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() | |
img_LR = img.unsqueeze(0) | |
img_LR = img_LR.to(device) | |
# write upscaled image | |
with torch.no_grad(): | |
output = upscale_model(img_LR).data.squeeze().float().cpu().clamp_(0, 1).numpy() | |
output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) | |
output = (output * 255.0).round() | |
# downscale image so it fits on discord | |
res = cv2.resize(output, dsize=(1536, 1536), interpolation=cv2.INTER_LANCZOS4) | |
cv2.imwrite(out_file, res) | |
return 'OK' | |
@app.route('/interrogate', methods=['POST']) | |
def interrogate(): | |
in_file = request.form['inFile'] | |
img = Image.open(in_file).convert('RGB') | |
gpu_image = transforms.Compose([ | |
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
])(img).unsqueeze(0).type(torch.cuda.HalfTensor).to(device) | |
with torch.no_grad(): | |
caption = blip_model.generate(gpu_image, sample=False, num_beams=blip_num_beams, min_length=blip_min_length, max_length=blip_max_length) | |
return caption[0] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment