Created
March 7, 2019 13:56
-
-
Save aymanosman/59f80cecd5f76f1e3b84f32b65d063f0 to your computer and use it in GitHub Desktop.
inequality.rkt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#lang pie | |
;; Prelude | |
(claim + | |
(-> Nat Nat Nat)) | |
(define + | |
(lambda (n m) | |
(rec-Nat n | |
m | |
(lambda (n-1 +/n-1) | |
(add1 +/n-1))))) | |
(claim nSm=Snm | |
(Pi ((n Nat) | |
(m Nat)) | |
(= Nat (+ n (add1 m)) (add1 (+ n m))))) | |
(claim <= | |
(-> Nat Nat | |
U)) | |
(define <= | |
(λ (a b) | |
(Σ ([k Nat]) | |
(= Nat (+ k a) b)))) | |
(define nSm=Snm | |
(lambda (n m) | |
(ind-Nat n | |
(lambda (k) (= Nat (+ k (add1 m)) (add1 (+ k m)))) | |
(same (add1 m)) | |
(lambda (n-1 h) | |
(cong h (+ 1)))))) | |
(claim plusAssociative | |
(Π ([n Nat] | |
[m Nat] | |
[k Nat]) | |
(= Nat (+ k (+ n m)) (+ (+ k n) m)))) | |
(define plusAssociative | |
(lambda (n m k) | |
(ind-Nat k | |
(lambda (k) (= Nat (+ k (+ n m)) (+ (+ k n) m))) | |
(same (+ n m)) | |
(lambda (k-1 plusAssociative/k-1) | |
(cong plusAssociative/k-1 (+ 1)))))) | |
;; End Prelude | |
;; Credit: Cesar | |
(claim remove-add1 | |
(-> Nat Nat)) | |
(define remove-add1 | |
(lambda (n) | |
(which-Nat n | |
0 | |
(lambda (n-1) n-1)))) | |
;; a | |
(claim n+0=n | |
(Π ((n Nat)) | |
(= Nat (+ n 0) n))) | |
(define n+0=n | |
(lambda (n) | |
(ind-Nat n | |
(lambda (k) (= Nat (+ k 0) k)) | |
(same 0) | |
(lambda (n-1 h) | |
(cong h (+ 1)))))) | |
;; 1 | |
(claim n+m=0->n=0 | |
(Π ((n Nat) | |
(m Nat)) | |
(-> (= Nat (+ n m) 0) | |
(= Nat n 0)))) | |
(define n+m=0->n=0 | |
(lambda (n m) | |
(ind-Nat m | |
(lambda (k) (-> (= Nat (+ n k) 0) (= Nat n 0))) | |
(lambda (n+0=0) (replace (n+0=n n) | |
(lambda (from/to) (= Nat from/to 0)) | |
n+0=0)) | |
(lambda (m-1 h) | |
(lambda (p) | |
;; h : (→ (= Nat (+ n m-1) 0) (= Nat n 0)) | |
;; p : (= Nat (+ n (add1 m-1)) 0) | |
(h (cong (replace (nSm=Snm n m-1) | |
(lambda (from/to) (= Nat from/to 0)) | |
p) | |
remove-add1))))))) | |
;; b | |
(claim n+0=0->n=0 | |
(Π ((n Nat)) | |
(-> (= Nat (+ n 0) 0) | |
(= Nat n 0)))) | |
(define n+0=0->n=0 | |
(lambda (n) | |
(ind-Nat n | |
(lambda (k) (-> (= Nat (+ k 0) 0) | |
(= Nat k 0))) | |
(lambda (a) a) | |
(lambda (n-1 h) | |
(lambda (p) | |
;; h : (→ (= Nat (+ n-1 0) 0) (= Nat n-1 0)) | |
;; p : (= Nat (add1 (+ n-1 0)) 0) | |
;; ————————————–————————————– | |
;; (= Nat (add1 n-1) 0) | |
(replace (n+0=n n-1) | |
(lambda (from/to) (= Nat (add1 from/to) 0)) | |
p)))))) | |
;; c | |
(claim 1+n=1->n=0 | |
(Π ((n Nat)) | |
(-> (= Nat (add1 n) 1) | |
(= Nat n 0)))) | |
(define 1+n=1->n=0 | |
(lambda (n) | |
(ind-Nat n | |
(lambda (k) (-> (= Nat (add1 k) 1) | |
(= Nat k 0))) | |
(lambda (p) (same 0)) | |
(lambda (n-1 h) | |
(lambda (p) | |
;; h : (→ (= Nat (add1 n-1) 1) (= Nat n-1 0)) | |
;; p : (= Nat (add1 (add1 n-1)) 1) | |
(cong p remove-add1)))))) | |
;; d | |
(claim 1+=1+ | |
(Π ((n Nat) | |
(m Nat)) | |
(-> (= Nat (add1 n) (add1 m)) | |
(= Nat n m)))) | |
(define 1+=1+ | |
(lambda (n m) | |
(ind-Nat m | |
(lambda (k) (-> (= Nat (add1 n) (add1 k)) | |
(= Nat n k))) | |
(lambda (p) (1+n=1->n=0 n p)) | |
(lambda (m-1 h) | |
(lambda (p) | |
(cong p remove-add1)))))) | |
;; 2 | |
(claim n+m=m->n=0 | |
(Π ((n Nat) | |
(m Nat)) | |
(-> (= Nat (+ n m) m) | |
(= Nat n 0)))) | |
(define n+m=m->n=0 | |
(lambda (n m) | |
(ind-Nat m | |
(lambda (k) (-> (= Nat (+ n k) k) (= Nat n 0))) | |
(lambda (n+0=0) | |
(n+0=0->n=0 n n+0=0)) | |
(lambda (n-1 h) | |
(lambda (h=) | |
;; h : (→ (= Nat (+ n n-1) n-1) (= Nat n 0)) | |
;; h= : (= Nat (+ n (add1 n-1)) (add1 n-1)) | |
;; to (= Nat (add1 (+ n n-1)) (add1 n-1)) – (1) | |
(h | |
(1+=1+ | |
(+ n n-1) n-1 | |
(replace (nSm=Snm n n-1) ; (1) | |
(lambda (nSm/Snm) (= Nat nSm/Snm (add1 n-1))) | |
h=)))))))) | |
;; 3 | |
(claim 0+n=m->n=m | |
(Π ((k Nat) | |
(n Nat) | |
(m Nat)) | |
(-> (= Nat (+ k n) m) (= Nat k 0) | |
(= Nat n m)))) | |
(define 0+n=m->n=m | |
(lambda (k n m k+n=m k=0) | |
(replace k=0 | |
(lambda (k/0) (= Nat (+ k/0 n) m)) | |
k+n=m))) | |
(claim a=b | |
(Π ((a Nat) | |
(b Nat)) | |
(-> (<= a b) (<= b a) | |
(= Nat a b)))) | |
(define a=b | |
(lambda (a b) | |
(lambda (p q) | |
;; p : ∃ k₀, k₀+a=b | |
;; q : ∃ k₁, k₁+b=a | |
;; or k₀+(k₁+b)=b (1) – rewrite p with symm q | |
;; or (k₀+k₁)+b=b (2) – plus associative | |
;; let k₂ = k₀+k₁ | |
;; then | |
;; k₂+b=b -> k₂=0 | |
;; k₀+k₁=0 -> k₀=0 | |
;; 0+a=b -> a=b | |
(0+n=m->n=m | |
(car p) a b (cdr p) | |
(n+m=0->n=0 | |
(car p) (car q) | |
(n+m=m->n=0 | |
(+ (car p) (car q)) b | |
(replace (plusAssociative (car q) b (car p)) ; (2) | |
(lambda (from/to) (= Nat from/to b)) | |
(replace (symm (cdr q)) ; (1) | |
(lambda (a/k₁+b) (= Nat (+ (car p) a/k₁+b) b)) | |
(cdr p))))))))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment