Skip to content

Instantly share code, notes, and snippets.

View ayoubbenaissa's full-sized avatar

ayoubbenaissa ayoubbenaissa

View GitHub Profile
@ayoubbenaissa
ayoubbenaissa / train_model
Created February 21, 2019 18:57
pytorch tuto
n = 100
for epoch in range(n):
epoch +=1
#convert numpy array into torch variable:
inputs = Variable(torch.from_numpy(x_train))
labels = Variable(torch.from_numpy(y_train))
#clear gradient w.r.t parameters:
optimizer.zero_grad()
@ayoubbenaissa
ayoubbenaissa / loss_and_optimizer
Created February 21, 2019 18:08
pytorch tuto
#Loss function:
criterion = nn.MSELoss()
#optimizer:
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
@ayoubbenaissa
ayoubbenaissa / create model
Created February 21, 2019 17:58
pytorch tuto
#create class:
class LinearRegressionModel (nn.Module):
def __init__(self, input_size, output_size):
super(LinearRegressionModel, self).__init__()
self.linear = nn.Linear(1, 1)
def forward(self, x):
out = self.linear(x)
return out
#create object (instance from the class)
@ayoubbenaissa
ayoubbenaissa / y_vector
Created February 21, 2019 17:42
pytorch
y = [2*i + 1 for i in range(11)] #y vector (y = 2x+1)
y_train = np.array(y, dtype=np.float32) #convert into numpy array
y_train = y_train.reshape(-1, 1)
@ayoubbenaissa
ayoubbenaissa / dunno
Created February 21, 2019 17:35
PyTorch tuto
x = [i for i in range(11)] #x is a set
x_train = np.array(x, dtype=np.float32) #translate x into numpy array
x_train = x_train.reshape(-1, 1) #rasgape x_train to be an array of shape (11, 1)
@ayoubbenaissa
ayoubbenaissa / ann
Created February 4, 2019 20:07
Create Ann
#initialize the ANN
classifier = Sequential()
#add input layer and first hidden layer
classifier.add(Dense(activation="relu", input_dim=11, units=6, kernel_initializer="uniform"))
#add second hidden layer
classifier.add(Dense(activation="relu", units=6, kernel_initializer="uniform"))
#output layer:
@ayoubbenaissa
ayoubbenaissa / ANN
Created February 4, 2019 19:52
ANN desc
#Creating the NN:
import keras
#sequential => initialize the neural network
from keras.models import Sequential
#Dense => build layers of the neural network
from keras.layers import Dense