Last active
June 1, 2020 14:44
-
-
Save ayushkumarshah/aa35d7fbfb9474d2a615665766d20a35 to your computer and use it in GitHub Desktop.
Pandas pipeline
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as mp | |
import pandas as pd | |
import datetime as dt | |
def df_info(f): | |
def wrapper(df, *args, **kwargs): | |
tic = dt.datetime.now() | |
result = f(df, *args, **kwargs) | |
toc = dt.datetime.now() | |
print("\n\n{} took {} time\n".format(f.__name__, toc - tic)) | |
print("After applying {}\n".format(f.__name__)) | |
print("Shape of df = {}\n".format(result.shape)) | |
print("Columns of df are {}\n".format(result.columns)) | |
print("Index of df is {}\n".format(result.index)) | |
for i in range(100): print("-", end='') | |
return result | |
return wrapper | |
def start_pipeline(df): | |
return df.copy() | |
@df_info | |
def create_dateindex(df): | |
df.index = pd.to_datetime(df.index, format="%Y%m%d") | |
return df | |
@df_info | |
def remove_columns(df): | |
df.drop([*df.columns[4:10], *df.columns[11:15], 'posNeg', 'fips'], | |
axis=1, inplace=True) | |
return df | |
@df_info | |
def fill_missing(df): | |
df.fillna(value=0, inplace=True) | |
return df | |
@df_info | |
def add_state_name(df): | |
_df = pd.read_csv('data/state_info.csv', usecols=['state', 'name']) | |
df = (df | |
.reset_index() | |
.merge(_df, on='state', how='left', left_index=True)) | |
df.set_index('date', inplace=True) | |
df.rename(columns={'name': 'state_name'}, inplace=True) | |
return df | |
@df_info | |
def drop_state(df): | |
df.drop(columns=['state'], inplace=True) | |
return df | |
@df_info | |
def sample_daily(df): | |
df = df.resample('D').sum() | |
return df | |
@df_info | |
def add_active_cases(df): | |
df['active'] = df['positive'] - df['death'] - df['recovered'] | |
return df | |
def aggregate_monthly(df, month): | |
df = (df.loc[month] | |
.groupby('state_name') | |
.agg({'positive': 'first', | |
'negative': 'first', | |
'pending': 'first', | |
'recovered': 'first', | |
'death': 'first', | |
'hospitalized': 'first', | |
'total': 'first', | |
'totalTestResults': 'first', | |
'deathIncrease': 'sum', | |
'hospitalizedIncrease': 'sum', | |
'negativeIncrease': 'sum', | |
'positiveIncrease': 'sum', | |
'totalTestResultsIncrease': 'sum'})) | |
return df | |
@df_info | |
def create_month_only(df, month): | |
df_current = aggregate_monthly(df, month) | |
if int(month[-2:]) == 0: | |
prev_month = str(int(month[:4]) - 1) + '-12' | |
else: | |
prev_month = month[:5] + '{:02d}'.format(int(month[-2:])-1) | |
df_previous = aggregate_monthly(df, prev_month) | |
df = df_current.sub(df_previous) | |
return df | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment