Last active
July 24, 2022 16:45
-
-
Save azarnyx/81194448ba173f557e7d68f8606d806d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import pylab as plt | |
import numpy as np | |
from tqdm import tqdm | |
df = pd.read_csv("../data/measurements_new.csv") | |
# 0. Initialize variablles | |
e0 = np.array((1, 0, 0), np.longdouble) | |
e1 = np.array((0, 1, 0), np.longdouble) | |
e2 = np.array((0, 0, 1), np.longdouble) | |
xx = np.array((1, 0, 0), np.longdouble) | |
yy = np.array((0, 1, 0), np.longdouble) | |
zz = np.array((0, 0, 1), np.longdouble) | |
dt = 0.01 | |
time = 0 | |
li_out = [] | |
Time = df.loc[:, 'loggingTime(txt)'] | |
ran = np.arange(0, Time.iloc[-1], dt) | |
i = 0 | |
alphap = None | |
def periodic(x, x_prev, T=2*np.pi): | |
# function is build to allow for x to have values more than pi | |
if x_prev == None: | |
return x | |
else: | |
d = x - x_prev | |
if abs(d) > abs(d + T): | |
x += T | |
elif abs(d) > abs(d - T): | |
x -= T | |
if x >= 2*np.pi: return x-2*np.pi | |
elif x <= -2*np.pi: return x+2*np.pi | |
else: return x | |
for time in tqdm(ran): | |
o0 = np.interp(time, Time, df['gyroRotationX(rad/s)']) | |
o1 = np.interp(time, Time, df['gyroRotationY(rad/s)']) | |
o2 = np.interp(time, Time, df['gyroRotationZ(rad/s)']) | |
# 1. Compute total rotational speed in iPhone coordinates (eq. 1) | |
omega = o0 * e0 + o1 * e1 + o2 * e2 | |
# 2. update iPhone coordinates based on the rotation (eq. 2) | |
e0 += dt * np.cross(omega, e0) | |
e1 += dt * np.cross(omega, e1) | |
e2 += dt * np.cross(omega, e2) | |
# 3. Gram-Schmidt transformation on new iPhone coordinates | |
e0 /= np.linalg.norm(e0) | |
e1 -= np.dot(e1, e0) * e0 | |
e1 /= np.linalg.norm(e1) | |
e2 -= np.dot(e2, e0) * e0 | |
e2 -= np.dot(e2, e1) * e1 | |
e2 /= np.linalg.norm(e2) | |
if i % 10 == 0: | |
# 4. Calculate alpha (eq. 3-4) | |
e0_proj = e0 - np.dot(e0, zz) * zz | |
alphax = np.arccos(np.dot(xx, e0_proj)/np.linalg.norm(e0_proj)) | |
alphay = np.arccos(np.dot(yy, e0_proj)/np.linalg.norm(e0_proj)) | |
if alphay > np.pi/2: | |
alpha = -alphax | |
else: | |
alpha = alphax | |
alpha = periodic(alpha, alphap) | |
alphap = alpha | |
li_out.append([time, alpha]) | |
time += dt | |
i += 1 | |
df_out = pd.DataFrame(li_out, columns=['time', 'alpha']) | |
fig, ax = plt.subplots(1, 1, figsize=(7, 3.5)) | |
ax.plot(df_out.time, df_out.alpha*180/np.pi, lw=1.5, label=r'$\alpha$') | |
ax.axhline(y=0, ls='--', lw=0.5, color='grey') | |
ax.set_xlabel('time, s') | |
ax.set_ylabel(r'$\alpha$, °') | |
plt.tight_layout() | |
df_out.to_csv("../data/output_sensors_n_correction.csv") | |
plt.savefig('../pics/new_measurements_no_correction.png', dpi=500, bbox_inches='tight') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment