... code to view each step of the "next permutation" bit manipulation algorithm ...
Last active
September 21, 2022 22:11
-
-
Save aziis98/6dab1183d13635036af8e66a11f8588a to your computer and use it in GitHub Desktop.
Exploration of bit operations to compute the next permutation with constant number of ones
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import numpy as np | |
n = 20 | |
def bin(v): | |
return np.binary_repr(v, width = n) | |
v = 0b1001110000 | |
t = (v | (v - 1)) + 1 | |
w = t | ((((t & -t) // (v & -v)) >> 1) - 1) | |
# print("=" * 55) | |
print(f"v = {bin(v)}") | |
print(f"v - 1 = {bin(v - 1)}") | |
print() | |
print(f"v's least significant 0 bits set to 1") | |
print(f"v | (v - 1) = {bin(v | (v - 1))}") | |
print() | |
print(f"t = (v | (v - 1)) + 1 = {bin((v | (v - 1)) + 1)}") | |
# print() | |
# print(f" 6 = {bin(6)}") | |
# print(f"-6 = {bin(-6)}") | |
print() | |
print(f" v = {bin(v)}") | |
print(f"-v = {bin(-v)}") | |
print(f"v & -v = {bin(v & -v)}") | |
print(f" t = {bin(t)}") | |
print(f"-t = {bin(-t)}") | |
print(f"t & -t = {bin(t & -t)}") | |
print() | |
print(f"t & -t = {bin(t & -t)}") | |
print(f"v & -v = {bin(v & -v)}") | |
print(f"(t & -t) // (v & -v) = {bin((t & -t) // (v & -v))}") | |
print(f"((t & -t) // (v & -v)) >> 1 = {bin(((t & -t) // (v & -v)) >> 1)}") | |
print() | |
print(f"((t & -t) // (v & -v)) >> 1 = {bin(((t & -t) // (v & -v)) >> 1)}") | |
print(f"(((t & -t) // (v & -v)) >> 1) - 1 = {bin((((t & -t) // (v & -v)) >> 1) - 1)}") | |
print(f"t | ((((t & -t) // (v & -v)) >> 1) - 1) = {bin(t | ((((t & -t) // (v & -v)) >> 1) - 1))}") | |
print() | |
print(f"in = {bin(v)}") | |
print(f"out = {bin(w)}") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
v = 00000000001001110000 | |
v - 1 = 00000000001001101111 | |
v's least significant 0 bits set to 1 | |
v | (v - 1) = 00000000001001111111 | |
t = (v | (v - 1)) + 1 = 00000000001010000000 | |
v = 00000000001001110000 | |
-v = 11111111110110010000 | |
v & -v = 00000000000000010000 | |
t = 00000000001010000000 | |
-t = 11111111110110000000 | |
t & -t = 00000000000010000000 | |
t & -t = 00000000000010000000 | |
v & -v = 00000000000000010000 | |
(t & -t) // (v & -v) = 00000000000000001000 | |
((t & -t) // (v & -v)) >> 1 = 00000000000000000100 | |
((t & -t) // (v & -v)) >> 1 = 00000000000000000100 | |
(((t & -t) // (v & -v)) >> 1) - 1 = 00000000000000000011 | |
t | ((((t & -t) // (v & -v)) >> 1) - 1) = 00000000001010000011 | |
in = 00000000001001110000 | |
out = 00000000001010000011 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment