Last active
December 18, 2020 05:27
-
-
Save azkalot1/72d6ba464b7d0f19e29c914a44a5ab50 to your computer and use it in GitHub Desktop.
Augs_dataset
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import albumentations as A | |
from torch.utils.data import Dataset, DataLoader | |
from collections import OrderedDict | |
class ChestXRayDataset(Dataset): | |
def __init__( | |
self, | |
images, | |
masks, | |
transforms): | |
self.images = images | |
self.masks = masks | |
self.transforms = transforms | |
def __len__(self): | |
return(len(self.images)) | |
def __getitem__(self, idx): | |
"""Will load the mask, get random coordinates around/with the mask, | |
load the image by coordinates | |
""" | |
sample_image = imread(self.images[idx]) | |
if len(sample_image.shape) == 3: | |
sample_image = sample_image[..., 0] | |
sample_image = np.expand_dims(sample_image, 2) / 255 | |
sample_mask = imread(self.masks[idx]) / 255 | |
if len(sample_mask.shape) == 3: | |
sample_mask = sample_mask[..., 0] | |
augmented = self.transforms(image=sample_image, mask=sample_mask) | |
sample_image = augmented['image'] | |
sample_mask = augmented['mask'] | |
sample_image = sample_image.transpose(2, 0, 1) # channels first | |
sample_mask = np.expand_dims(sample_mask, 0) | |
data = {'features': torch.from_numpy(sample_image.copy()).float(), | |
'mask': torch.from_numpy(sample_mask.copy()).float()} | |
return(data) | |
def get_valid_transforms(crop_size=256): | |
return A.Compose( | |
[ | |
A.Resize(crop_size, crop_size), | |
], | |
p=1.0) | |
def light_training_transforms(crop_size=256): | |
return A.Compose([ | |
A.RandomResizedCrop(height=crop_size, width=crop_size), | |
A.OneOf( | |
[ | |
A.Transpose(), | |
A.VerticalFlip(), | |
A.HorizontalFlip(), | |
A.RandomRotate90(), | |
A.NoOp() | |
], p=1.0), | |
]) | |
def medium_training_transforms(crop_size=256): | |
return A.Compose([ | |
A.RandomResizedCrop(height=crop_size, width=crop_size), | |
A.OneOf( | |
[ | |
A.Transpose(), | |
A.VerticalFlip(), | |
A.HorizontalFlip(), | |
A.RandomRotate90(), | |
A.NoOp() | |
], p=1.0), | |
A.OneOf( | |
[ | |
A.CoarseDropout(max_holes=16, max_height=16, max_width=16), | |
A.NoOp() | |
], p=1.0), | |
]) | |
def heavy_training_transforms(crop_size=256): | |
return A.Compose([ | |
A.RandomResizedCrop(height=crop_size, width=crop_size), | |
A.OneOf( | |
[ | |
A.Transpose(), | |
A.VerticalFlip(), | |
A.HorizontalFlip(), | |
A.RandomRotate90(), | |
A.NoOp() | |
], p=1.0), | |
A.ShiftScaleRotate(p=0.75), | |
A.OneOf( | |
[ | |
A.CoarseDropout(max_holes=16, max_height=16, max_width=16), | |
A.NoOp() | |
], p=1.0), | |
]) | |
def get_training_trasnforms(transforms_type): | |
if transforms_type == 'light': | |
return(light_training_transforms()) | |
elif transforms_type == 'medium': | |
return(medium_training_transforms()) | |
elif transforms_type == 'heavy': | |
return(heavy_training_transforms()) | |
else: | |
raise NotImplementedError("Not implemented transformation configuration") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment