Created
December 18, 2020 05:31
-
-
Save azkalot1/dafa0f2b3ff5b306fe00c958e611139f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
callbacks = [ | |
# Each criterion is calculated separately. | |
CriterionCallback( | |
input_key="mask", | |
prefix="loss_dice", | |
criterion_key="dice" | |
), | |
CriterionCallback( | |
input_key="mask", | |
prefix="loss_bce", | |
criterion_key="bce" | |
), | |
# And only then we aggregate everything into one loss. | |
MetricAggregationCallback( | |
prefix="loss", | |
mode="weighted_sum", | |
metrics={ | |
"loss_dice": 1.0, | |
"loss_bce": 0.8 | |
}, | |
), | |
# metrics | |
IoUMetricsCallback( | |
mode='binary', | |
input_key='mask', | |
) | |
] | |
runner = dl.SupervisedRunner(input_key="features", input_target_key="mask") | |
runner.train( | |
model=model, | |
criterion=criterion, | |
optimizer=optimizer, | |
scheduler=scheduler, | |
loaders=loaders, | |
callbacks=callbacks, | |
logdir='../logs/xray_test_log', | |
num_epochs=100, | |
main_metric="loss", | |
minimize_metric=True, | |
verbose=True, | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment