Created
June 19, 2020 17:01
-
-
Save b-mehta/6853a5d1ec83c33f9b7181532fa445c8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import category_theory.monad.algebra | |
import data.sigma | |
namespace category_theory | |
open category_theory category_theory.category category_theory.limits comonad | |
universes v u | |
variables {C : Type u} [small_category C] | |
@[simps] | |
def inner_functor (Y : Type u) : Cᵒᵖ ⥤ Type u := | |
{ obj := λ X, Π T, (T ⟶ X.unop) → Y, | |
map := λ X Z f t T g, t T (g ≫ f.unop) } | |
variable (C) | |
@[simps] | |
def W : Type u ⥤ Type u := | |
{ obj := λ Y, Σ (x : Cᵒᵖ), (inner_functor Y).obj x, | |
map := λ Y Z f Ue, ⟨Ue.1, λ T g, f (Ue.2 T g)⟩ }. | |
instance : comonad (W C) := | |
{ ε := { app := λ Y Ue, Ue.2 Ue.1.unop (𝟙 _) }, | |
δ := { app := λ Y Ue, ⟨Ue.1, λ T f, ⟨opposite.op T, λ S g, Ue.2 S (g ≫ f)⟩⟩ }, | |
right_counit' := | |
begin | |
intro Y, | |
ext1 ⟨U, e⟩, | |
dsimp [W], | |
simp, | |
end, | |
coassoc' := | |
begin | |
intro Y, | |
ext ⟨U, e⟩, | |
dsimp [W], | |
congr' 1, | |
ext T f, | |
congr' 1, | |
ext S g, | |
congr' 1, | |
dsimp, | |
ext k, | |
simp, | |
end }. | |
def coalgebra_to_presheaf : coalgebra (W C) ⥤ Cᵒᵖ ⥤ Type u := | |
{ obj := λ w, | |
{ obj := λ X, {i : _ // (w.a i).1 = X}, | |
map := λ X Y f a, | |
begin | |
refine ⟨_, _⟩, | |
apply (w.a a.1).2 _ (f.unop ≫ eq_to_hom (opposite.op_inj a.2.symm)), | |
have t := congr_fun w.coassoc a.1, | |
dsimp [comonad.δ, W] at t, | |
injection t with t₁ t₂, | |
rw heq_iff_eq at t₂, | |
replace t₂ := congr_fun t₂ Y.unop, | |
replace t₂ := congr_fun t₂ (f.unop ≫ eq_to_hom (opposite.op_inj a.2.symm)), | |
replace t₂ := congr_arg sigma.fst t₂, | |
apply t₂.symm | |
end, | |
map_id' := λ X, | |
begin | |
ext1 ⟨a, ha⟩, | |
dsimp, | |
congr' 1, | |
cases ha, | |
rw id_comp, | |
exact congr_fun w.counit a, | |
end, | |
map_comp' := λ X Y Z f g, | |
begin | |
ext1 ⟨a, ha⟩, | |
subst ha, | |
dsimp, | |
rw comp_id, | |
rw comp_id, | |
congr' 1, | |
have t := congr_fun w.coassoc a, | |
dsimp [comonad.δ, W] at t, | |
injection t with t₁ t₂, | |
rw heq_iff_eq at t₂, | |
replace t₂ := congr_fun t₂ Y.unop, | |
replace t₂ := congr_fun t₂ f.unop, | |
dsimp at t₂, | |
rw ← sigma.eta (w.a ((w.a a).snd Y.unop f.unop)) at t₂, | |
dsimp at t₂, | |
have := sigma.mk.inj t₂, | |
rcases this with ⟨t₃, t₄⟩, | |
-- by using t₄, we get the result pretty easily | |
end | |
} | |
} | |
end category_theory |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment