Last active
October 12, 2020 00:20
-
-
Save b-mehta/ee89376db987b749bd5120a2180ce3df to your computer and use it in GitHub Desktop.
pedro.lean
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import control.bifunctor | |
import data.multiset.basic | |
import tactic | |
example {α} {x : α} {xs : multiset α} : {x} ≤ x :: xs := | |
begin | |
rw multiset.singleton_eq_singleton, | |
apply multiset.cons_le_cons, | |
apply zero_le, | |
end | |
universe u | |
@[derive decidable_eq] | |
inductive term : Type | |
| var : ℕ → term | |
| impl : term → term → term | |
open term | |
namespace term | |
def weight : term → ℕ | |
| (var _) := 1 | |
| (impl x y) := x.weight + y.weight + 1 | |
instance : has_lt term := ⟨inv_image (<) weight⟩ | |
def wf_term : well_founded ((<) : term → term → Prop) := measure_wf _ | |
end term | |
@[derive [has_add]] | |
def dm (α) := multiset α | |
instance {α : Type u} [decidable_eq α] : has_sub (dm α) := | |
⟨λ X Y, (X - Y : multiset α)⟩ | |
def to_dm {α} (s : multiset α) : dm α := s | |
instance {α : Type u} [decidable_eq α] [has_lt α] : has_lt (dm α) := | |
{ lt := λ M N, ∃ (X Y : multiset α), X ≠ 0 ∧ (X : multiset α) ≤ (N : multiset α) ∧ M = (N - X) + Y ∧ ∀ y ∈ Y, ∃ x ∈ X, y < x } | |
-- standard result about the Dershowitz–Manna ordering | |
lemma wf_dm {α : Type u} [decidable_eq α] [has_lt α] (t : well_founded ((<) : α → α → Prop)) : | |
well_founded ((<) : dm α → dm α → Prop) := | |
sorry | |
def select {α : Type u} : list α → list (α × list α) | |
| (a :: as) := (a, as) :: list.map (bifunctor.snd (list.cons a)) (select as) | |
| [] := [] | |
#check inv_image | |
def combine : (Σ' (a : list term), term) → list term := λ ⟨xs, x⟩, x :: xs | |
def args_to_dm : (Σ' (a : multiset term), term) → dm term := | |
λ x, to_dm (x.2 :: x.1) | |
def my_ordering : (Σ' (a : multiset term), term) → (Σ' (a : multiset term), term) → Prop := | |
inv_image (<) args_to_dm | |
lemma proof2 (a b env) : my_ordering ⟨a :: env, b⟩ ⟨env, a.impl b⟩ := | |
begin | |
change to_dm (b :: a :: env) < to_dm (a.impl b :: env), | |
refine ⟨a.impl b :: 0, b :: a :: 0, _, _, _, _⟩, | |
{ simp }, | |
{ apply multiset.cons_le_cons, | |
apply zero_le }, | |
{ change b :: a :: env = a.impl b :: env - _ + _, | |
simp }, | |
{ simp only [exists_prop, multiset.mem_cons, exists_eq_left, multiset.mem_singleton], | |
rintro _ (rfl | rfl); | |
change _ < _ + _; | |
linarith }, | |
end | |
example {α} (x y : α) (xs : multiset α) : x :: y :: xs = y :: x :: xs := | |
begin | |
refine multiset.cons_swap x y xs, | |
end | |
lemma proof3 (env : multiset term) (x y : ℕ) (a b : term) (e' : multiset term) | |
(h₁ : a.impl b :: e' = env) (h₂ : a = var y) (h₃ : a ∈ e') : | |
my_ordering ⟨b :: e', var x⟩ ⟨env, var x⟩ := | |
begin | |
subst h₂, | |
subst h₁, | |
refine ⟨(var y).impl b :: 0, b :: 0, _, _, _, _⟩, | |
{ simp }, | |
{ change multiset.cons _ _ ≤ multiset.cons (var x) (_ :: _), | |
simp }, | |
{ change var x :: b :: e' = (_ :: _ :: _) - (_ :: _) + (b :: 0), | |
simp [multiset.cons_swap (var x) b] }, | |
{ simp only [exists_prop, forall_eq, exists_eq_left, multiset.mem_singleton], | |
change _ < _ + _, | |
linarith } | |
end | |
lemma proof4 (env : multiset term) (a b c d : term) (e' : multiset term) (x : ℕ) | |
(h₁ : a.impl b :: e' = env) (h₂ : a = c.impl d) : | |
my_ordering ⟨d.impl b :: e', a⟩ ⟨env, var x⟩ := | |
begin | |
subst h₁, | |
subst h₂, | |
change multiset.cons _ (multiset.cons _ _) < multiset.cons _ _, | |
dsimp, | |
refine ⟨var x :: (c.impl d).impl b :: 0, c.impl d :: d.impl b :: 0, _, _, _, _⟩, | |
{ simp }, | |
{ apply multiset.cons_le_cons, apply multiset.cons_le_cons, apply zero_le }, | |
{ simp }, | |
{ simp only [exists_prop, multiset.mem_cons, multiset.mem_singleton], | |
rintro _ (rfl | rfl), | |
{ refine ⟨_, or.inr rfl, _⟩, | |
change _ < _ + _, | |
linarith }, | |
{ refine ⟨_, or.inr rfl, _⟩, | |
change _ + _ < (_ + _) + _ + _, | |
linarith } }, | |
end | |
lemma proof4' (e' env : multiset term) (a b c d : term) (x : ℕ) (h₁ : a.impl b :: e' = env) (h₂ : a = c.impl d) : | |
my_ordering ⟨b :: e', var x⟩ ⟨env, var x⟩ := | |
begin | |
subst h₂, | |
subst h₁, | |
change multiset.cons _ (multiset.cons _ _) < multiset.cons _ _, | |
dsimp, | |
refine ⟨(c.impl d).impl b :: 0, b :: 0, _, _, _, _⟩, | |
{ simp }, | |
{ simp }, | |
{ simp [multiset.cons_swap] }, | |
{ simp only [exists_prop, forall_eq, exists_eq_left, multiset.mem_singleton], | |
change _ < _ + _, | |
linarith } | |
end | |
def ljt' : multiset term → term → Prop | |
| env t@(var x) := | |
if t ∈ env -- LJT₁ for A = var _ | |
then true | |
else ∃ a b (e' : multiset term) (h₁ : impl a b :: e' = env), -- split env up: this is another way of doing `select` | |
((∃ y (h₂ : a = var y) (h₃ : a ∈ e'), (have my_ordering ⟨b :: e', var x⟩ ⟨env, var x⟩, from proof3 _ _ _ _ _ _ h₁ h₂ h₃, ljt' (b :: e') t)) ∨ -- LJT₃ | |
(∃ c d (h₂ : a = impl c d), | |
(have my_ordering ⟨d.impl b :: e', a⟩ ⟨env, var x⟩, from proof4 _ _ _ _ _ _ _ h₁ h₂, ljt' (impl d b :: e') a) ∧ | |
have my_ordering ⟨b :: e', var x⟩ ⟨env, var x⟩, from proof4' _ _ _ _ _ _ _ h₁ h₂, ljt' (b :: e') t)) -- the two new parts of LJT₄ | |
| env t@(impl a b) := | |
if t ∈ env -- LJT₁ for A = impl _ _ | |
then true | |
else have my_ordering ⟨a :: env, b⟩ ⟨env, a.impl b⟩, from proof2 a b env, | |
ljt' (a :: env) b -- LJT₂ (use proof2) | |
using_well_founded | |
{ rel_tac := λ _ _, `[exact ⟨my_ordering, inv_image.wf _ (wf_dm term.wf_term)⟩], | |
dec_tac := tactic.assumption} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment