確率論的プログラミングはまだ若い分野ですので,計算環境の構築方法が成熟していません.チュートリアルではpymc3やpystanを利用しますが,それらの開発者は基本的にUbuntuにAnaconda Pythonを利用してるので,まともに動作する環境はどうしてもUbuntu + Anacondaが中心になってしまいます.以下に構築前の注意を列挙します.
- Windowsで確率論的プログラミングを行うことは,pymc3のtheanoのGPUの問題,pystanのプロセス制限の問題等,制約が多すぎて困難な道となります.Windowsを利用する場合,VMWare, VirtualBox, Vagrant等の仮想環境またはDocker等のコンテナ技術を利用してLinuxを用意するほうが精神衛生上望ましいと考えています.
- Python環境の構築はAnacondaディストリビューションを前提とします.素のPythonから確率論的プログラミングの環境を構築することは,数々の罠に嵌まる可能性が否定できませんので推奨できません.
- もしも,チュートリアル当日までに環境を構築できなくても問題ありません.チュートリアルはJupyter Notebookで行いますので,Docker Imageを用意
するか,JupyterHub等によりWebブラウザからチュートリアルマテリアルにアクセスし実行できるようにします. - 皆様には大変申し訳ございませんが,JupyterHubが技術的理由により用意できませんでした.お詫びを申しあげます.代わりに以下のnbviewerで代替させていただきます.