Created
June 13, 2016 18:01
-
-
Save bamos/a5102f890f16a391084a0950618ef477 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
nan | |
1 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> (7) -> (8) -> (9) -> (10) -> (11) -> (12) -> (13) -> (14) -> (15) -> (16) -> (17) -> (18) -> (19) -> (20) -> (21) -> (22) -> (23) -> (24) -> output] | |
(1): nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
(5): nn.SpatialCrossMapLRN | |
(6): nn.SpatialConvolution(64 -> 64, 1x1) | |
(7): nn.SpatialBatchNormalization | |
(8): nn.ReLU | |
(9): nn.SpatialConvolution(64 -> 192, 3x3, 1,1, 1,1) | |
(10): nn.SpatialBatchNormalization | |
(11): nn.ReLU | |
(12): nn.SpatialCrossMapLRN | |
(13): nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
(14): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(192 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
(15): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(256 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
(16): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
... -> output | |
} | |
(17): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(640 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
(18): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
... -> output | |
} | |
(19): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
(20): nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(736 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
(21): nn.SpatialAveragePooling(3x3, 1,1) | |
(22): nn.View(736) | |
(23): nn.Linear(736 -> 128) | |
(24): nn.Normalize(2) | |
} | |
nan | |
2 nn.SpatialConvolution(3 -> 64, 7x7, 2,2, 3,3) | |
28428.669774754 | |
3 nn.SpatialBatchNormalization | |
47485.344581918 | |
4 nn.ReLU | |
47485.344581918 | |
5 nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
29610.480826637 | |
6 nn.SpatialCrossMapLRN | |
29607.20285791 | |
7 nn.SpatialConvolution(64 -> 64, 1x1) | |
-46215.649390483 | |
8 nn.SpatialBatchNormalization | |
5586.9869854718 | |
9 nn.ReLU | |
5586.9869854718 | |
10 nn.SpatialConvolution(64 -> 192, 3x3, 1,1, 1,1) | |
-243945.2438823 | |
11 nn.SpatialBatchNormalization | |
14310.947079424 | |
12 nn.ReLU | |
14310.947079424 | |
13 nn.SpatialCrossMapLRN | |
14310.764782931 | |
14 nn.SpatialMaxPooling(3x3, 2,2, 1,1) | |
9299.4612118299 | |
15 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(192 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
7372.8237418521 | |
16 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(192 -> 16, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(192 -> 32, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(192 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
7372.8237418521 | |
17 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(192 -> 96, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
3041.5289890589 | |
18 nn.SpatialConvolution(192 -> 96, 1x1) | |
-4221.4973005245 | |
19 nn.SpatialBatchNormalization | |
3381.8238505099 | |
20 nn.ReLU | |
3381.8238505099 | |
21 nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
7723.8720341735 | |
22 nn.SpatialBatchNormalization | |
3041.5289890589 | |
23 nn.ReLU | |
3041.5289890589 | |
24 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(192 -> 16, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
1097.3607423482 | |
25 nn.SpatialConvolution(192 -> 16, 1x1) | |
-1095.6663571014 | |
26 nn.SpatialBatchNormalization | |
533.20889493544 | |
27 nn.ReLU | |
533.20889493544 | |
28 nn.SpatialConvolution(16 -> 32, 5x5, 1,1, 2,2) | |
560.78297215328 | |
29 nn.SpatialBatchNormalization | |
1097.3607423482 | |
30 nn.ReLU | |
1097.3607423482 | |
31 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
(2): nn.SpatialConvolution(192 -> 32, 1x1) | |
(3): nn.SpatialBatchNormalization | |
(4): nn.ReLU | |
} | |
255.2191820778 | |
32 nn.SpatialMaxPooling(3x3, 2,2) | |
2537.3004810991 | |
33 nn.SpatialConvolution(192 -> 32, 1x1) | |
260.92130632512 | |
34 nn.SpatialBatchNormalization | |
255.2191820778 | |
35 nn.ReLU | |
255.2191820778 | |
36 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(192 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
2978.7148283671 | |
37 nn.SpatialConvolution(192 -> 64, 1x1) | |
-1925.0513102314 | |
38 nn.SpatialBatchNormalization | |
2978.7148283671 | |
39 nn.ReLU | |
2978.7148283671 | |
40 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(256 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
4192.5248958138 | |
41 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(256 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(256 -> 64, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(256 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
4192.5248958138 | |
42 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(256 -> 96, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
1740.6393912397 | |
43 nn.SpatialConvolution(256 -> 96, 1x1) | |
-5744.7828996833 | |
44 nn.SpatialBatchNormalization | |
2135.0005637809 | |
45 nn.ReLU | |
2135.0005637809 | |
46 nn.SpatialConvolution(96 -> 128, 3x3, 1,1, 1,1) | |
-31627.677911759 | |
47 nn.SpatialBatchNormalization | |
1740.6393912397 | |
48 nn.ReLU | |
1740.6393912397 | |
49 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(256 -> 32, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
1100.3323725164 | |
50 nn.SpatialConvolution(256 -> 32, 1x1) | |
-2077.8073705663 | |
51 nn.SpatialBatchNormalization | |
816.2209900188 | |
52 nn.ReLU | |
816.2209900188 | |
53 nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
-9842.4670063686 | |
54 nn.SpatialBatchNormalization | |
1100.3323725164 | |
55 nn.ReLU | |
1100.3323725164 | |
56 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Square | |
(2): nn.SpatialAveragePooling(3x3, 3,3) | |
(3): nn.MulConstant | |
(4): nn.Sqrt | |
} | |
(2): nn.SpatialConvolution(256 -> 64, 1x1) | |
(3): nn.SpatialBatchNormalization | |
(4): nn.ReLU | |
} | |
123.4834844321 | |
57 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Square | |
(2): nn.SpatialAveragePooling(3x3, 3,3) | |
(3): nn.MulConstant | |
(4): nn.Sqrt | |
} | |
2995.9608779663 | |
58 nn.Square | |
5307.9655835477 | |
59 nn.SpatialAveragePooling(3x3, 3,3) | |
5307.9655962903 | |
60 nn.MulConstant | |
5307.9655962903 | |
61 nn.Sqrt | |
2995.9608779663 | |
62 nn.SpatialConvolution(256 -> 64, 1x1) | |
-1013.5408580252 | |
63 nn.SpatialBatchNormalization | |
123.4834844321 | |
64 nn.ReLU | |
123.4834844321 | |
65 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(256 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
1228.0696476256 | |
66 nn.SpatialConvolution(256 -> 64, 1x1) | |
-4882.411236471 | |
67 nn.SpatialBatchNormalization | |
1228.0696476256 | |
68 nn.ReLU | |
1228.0696476256 | |
69 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
... -> output | |
} | |
4118.1789596067 | |
70 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 128, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(320 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
... -> output | |
} | |
4118.1789596067 | |
71 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(320 -> 128, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
1590.7774455175 | |
72 nn.SpatialConvolution(320 -> 128, 1x1) | |
-6934.5462531344 | |
73 nn.SpatialBatchNormalization | |
2216.6457054392 | |
74 nn.ReLU | |
2216.6457054392 | |
75 nn.SpatialConvolution(128 -> 256, 3x3, 2,2, 1,1) | |
-5044.9248673413 | |
76 nn.SpatialBatchNormalization | |
1590.7774455175 | |
77 nn.ReLU | |
1590.7774455175 | |
78 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(320 -> 32, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
590.11505900137 | |
79 nn.SpatialConvolution(320 -> 32, 1x1) | |
-2195.1067498252 | |
80 nn.SpatialBatchNormalization | |
591.04037207016 | |
81 nn.ReLU | |
591.04037207016 | |
82 nn.SpatialConvolution(32 -> 64, 5x5, 2,2, 2,2) | |
-423.32057787105 | |
83 nn.SpatialBatchNormalization | |
590.11505900137 | |
84 nn.ReLU | |
590.11505900137 | |
85 nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
1937.2864550878 | |
86 nn.SpatialMaxPooling(3x3, 2,2) | |
1937.2864550878 | |
87 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(640 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
1419.2592620309 | |
88 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 32, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(640 -> 128, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (4): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(640 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
1419.2592620309 | |
89 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(640 -> 96, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
450.65505624563 | |
90 nn.SpatialConvolution(640 -> 96, 1x1) | |
-1807.8697174145 | |
91 nn.SpatialBatchNormalization | |
494.42065476626 | |
92 nn.ReLU | |
494.42065476626 | |
93 nn.SpatialConvolution(96 -> 192, 3x3, 1,1, 1,1) | |
-6616.060830225 | |
94 nn.SpatialBatchNormalization | |
450.65505624563 | |
95 nn.ReLU | |
450.65505624563 | |
96 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(640 -> 32, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
249.36065697856 | |
97 nn.SpatialConvolution(640 -> 32, 1x1) | |
-971.76546653546 | |
98 nn.SpatialBatchNormalization | |
116.89276184887 | |
99 nn.ReLU | |
116.89276184887 | |
100 nn.SpatialConvolution(32 -> 64, 5x5, 1,1, 2,2) | |
-1564.9647967899 | |
101 nn.SpatialBatchNormalization | |
249.36065697856 | |
102 nn.ReLU | |
249.36065697856 | |
103 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Square | |
(2): nn.SpatialAveragePooling(3x3, 3,3) | |
(3): nn.MulConstant | |
(4): nn.Sqrt | |
} | |
(2): nn.SpatialConvolution(640 -> 128, 1x1) | |
(3): nn.SpatialBatchNormalization | |
(4): nn.ReLU | |
} | |
48.05579098314 | |
104 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Square | |
(2): nn.SpatialAveragePooling(3x3, 3,3) | |
(3): nn.MulConstant | |
(4): nn.Sqrt | |
} | |
1936.6284440761 | |
105 nn.Square | |
2488.1982231718 | |
106 nn.SpatialAveragePooling(3x3, 3,3) | |
2488.1982171444 | |
107 nn.MulConstant | |
2488.1982171444 | |
108 nn.Sqrt | |
1936.6284440761 | |
109 nn.SpatialConvolution(640 -> 128, 1x1) | |
-271.71464906633 | |
110 nn.SpatialBatchNormalization | |
48.05579098314 | |
111 nn.ReLU | |
48.05579098314 | |
112 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(640 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
671.18775782362 | |
113 nn.SpatialConvolution(640 -> 256, 1x1) | |
-12056.546502997 | |
114 nn.SpatialBatchNormalization | |
671.18775782362 | |
115 nn.ReLU | |
671.18775782362 | |
116 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
... -> output | |
} | |
977.68043720257 | |
117 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 160, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(640 -> 64, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
... -> output | |
} | |
977.68043720257 | |
118 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(640 -> 160, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
223.0856897803 | |
119 nn.SpatialConvolution(640 -> 160, 1x1) | |
-2699.4321808368 | |
120 nn.SpatialBatchNormalization | |
659.31336273719 | |
121 nn.ReLU | |
659.31336273719 | |
122 nn.SpatialConvolution(160 -> 256, 3x3, 2,2, 1,1) | |
-2866.4377360148 | |
123 nn.SpatialBatchNormalization | |
223.0856897803 | |
124 nn.ReLU | |
223.0856897803 | |
125 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(640 -> 64, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
188.83432870358 | |
126 nn.SpatialConvolution(640 -> 64, 1x1) | |
-1479.4027583133 | |
127 nn.SpatialBatchNormalization | |
252.81468722224 | |
128 nn.ReLU | |
252.81468722224 | |
129 nn.SpatialConvolution(64 -> 128, 5x5, 2,2, 2,2) | |
-576.61599449255 | |
130 nn.SpatialBatchNormalization | |
188.83432870358 | |
131 nn.ReLU | |
188.83432870358 | |
132 nn.Sequential { | |
[input -> (1) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
} | |
565.76041871868 | |
133 nn.SpatialMaxPooling(3x3, 2,2) | |
565.76041871868 | |
134 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
nan | |
135 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.Square | |
| (2): nn.SpatialAveragePooling(3x3, 3,3) | |
| (3): nn.MulConstant | |
| (4): nn.Sqrt | |
| } | |
| (2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
nan | |
136 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(1024 -> 96, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
274.44969951734 | |
137 nn.SpatialConvolution(1024 -> 96, 1x1) | |
287.26738857804 | |
138 nn.SpatialBatchNormalization | |
40.567358113825 | |
139 nn.ReLU | |
40.567358113825 | |
140 nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
-2398.1525074965 | |
141 nn.SpatialBatchNormalization | |
274.44969951734 | |
142 nn.ReLU | |
274.44969951734 | |
143 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Square | |
(2): nn.SpatialAveragePooling(3x3, 3,3) | |
(3): nn.MulConstant | |
(4): nn.Sqrt | |
} | |
(2): nn.SpatialConvolution(1024 -> 96, 1x1) | |
(3): nn.SpatialBatchNormalization | |
(4): nn.ReLU | |
} | |
nan | |
144 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.Square | |
(2): nn.SpatialAveragePooling(3x3, 3,3) | |
(3): nn.MulConstant | |
(4): nn.Sqrt | |
} | |
521.42340321187 | |
145 nn.Square | |
618.61728306977 | |
146 nn.SpatialAveragePooling(3x3, 3,3) | |
618.61728176965 | |
147 nn.MulConstant | |
618.61728176965 | |
148 nn.Sqrt | |
521.42340321187 | |
149 nn.SpatialConvolution(1024 -> 96, 1x1) | |
-5.9299795031548 | |
150 nn.SpatialBatchNormalization | |
nan | |
151 nn.ReLU | |
nan | |
152 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(1024 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
127.47477568407 | |
153 nn.SpatialConvolution(1024 -> 256, 1x1) | |
-2194.8630077215 | |
154 nn.SpatialBatchNormalization | |
127.47477568407 | |
155 nn.ReLU | |
127.47477568407 | |
156 nn.Inception @ nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(736 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
nan | |
157 nn.DepthConcat { | |
input | |
|`-> (1): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
| (1): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (2): nn.SpatialBatchNormalization | |
| (3): nn.ReLU | |
| (4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
| (5): nn.SpatialBatchNormalization | |
| (6): nn.ReLU | |
| } | |
|`-> (2): nn.Sequential { | |
| [input -> (1) -> (2) -> (3) -> (4) -> output] | |
| (1): nn.SpatialMaxPooling(3x3, 2,2) | |
| (2): nn.SpatialConvolution(736 -> 96, 1x1) | |
| (3): nn.SpatialBatchNormalization | |
| (4): nn.ReLU | |
| } | |
|`-> (3): nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(736 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
... -> output | |
} | |
nan | |
158 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> (5) -> (6) -> output] | |
(1): nn.SpatialConvolution(736 -> 96, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
(4): nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
(5): nn.SpatialBatchNormalization | |
(6): nn.ReLU | |
} | |
nan | |
159 nn.SpatialConvolution(736 -> 96, 1x1) | |
nan | |
160 nn.SpatialBatchNormalization | |
nan | |
161 nn.ReLU | |
nan | |
162 nn.SpatialConvolution(96 -> 384, 3x3, 1,1, 1,1) | |
nan | |
163 nn.SpatialBatchNormalization | |
nan | |
164 nn.ReLU | |
nan | |
165 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> (4) -> output] | |
(1): nn.SpatialMaxPooling(3x3, 2,2) | |
(2): nn.SpatialConvolution(736 -> 96, 1x1) | |
(3): nn.SpatialBatchNormalization | |
(4): nn.ReLU | |
} | |
nan | |
166 nn.SpatialMaxPooling(3x3, 2,2) | |
112.96316097956 | |
167 nn.SpatialConvolution(736 -> 96, 1x1) | |
126.45520535111 | |
168 nn.SpatialBatchNormalization | |
nan | |
169 nn.ReLU | |
nan | |
170 nn.Sequential { | |
[input -> (1) -> (2) -> (3) -> output] | |
(1): nn.SpatialConvolution(736 -> 256, 1x1) | |
(2): nn.SpatialBatchNormalization | |
(3): nn.ReLU | |
} | |
nan | |
171 nn.SpatialConvolution(736 -> 256, 1x1) | |
nan | |
172 nn.SpatialBatchNormalization | |
nan | |
173 nn.ReLU | |
nan | |
174 nn.SpatialAveragePooling(3x3, 1,1) | |
nan | |
175 nn.View(736) | |
nan | |
176 nn.Linear(736 -> 128) | |
nan | |
177 nn.Normalize(2) | |
nan |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment