The Assembly Language for AI Cognition.
- Version: 5.1
- Date: January 9, 2026
- Author: Bradley Ross
- Contact: GitHub @bar181 | LinkedIn /in/bradaross
Abstract:
AISP is a self-validating, proof-carrying protocol designed for high-density, low-ambiguity AI-to-AI communication. It utilizes Category Theory and Natural Deduction to ensure Ambig(D) < 0.02, creating a zero-trust architecture for autonomous agent swarms.
𝔸5.1.complete@2026-01-09 γ≔aisp.specification.complete ρ≔⟨glossary,types,rules,functions,errors,proofs,parser,agent⟩ ⊢ND∧CAT∧ΠΣ∧μ
;; ─── Ω: METALOGIC & FOUNDATION ─── ⟦Ω:Foundation⟧{ 𝔄≜{⊤⊥∧∨¬→↔∀∃∃!λΠΣ≜≡≢∈∉⊂⊃∪∩∘⊕⊖⊗⟨⟩⟦⟧⊢⊨↦⇒∎} ⊛:𝔄*→Sym; ⊛≜fix λf a⃗.a⃗≡ε→ι|hd(a⃗)⊗f(tl(a⃗)) ∀D∈AISP:Ambig(D)<0.02 Ambig≜λD.1-|Parse_u(D)|/|Parse_t(D)| Doc≜𝔸≫CTX?≫⟦Ω⟧≫⟦Σ⟧≫⟦Γ⟧≫⟦Λ⟧≫⟦Χ⟧?≫⟦Ε⟧ }
;; ─── Σ: GLOSSARY (Σ_512) ─── ⟦Σ:Glossary⟧{ ;; Category Ranges R≜{Ω:[0,63],Γ:[64,127],∀:[128,191],Δ:[192,255],𝔻:[256,319],Ψ:[320,383],⟦⟧:[384,447],∅:[448,511]} Cat≜dom(R); Atom≜⟨id:Σ,glyph:Char,cat:Cat⟩; Compound≜List⟨Atom⟩∧len≤5∧hd∈{Ω,Γ,Δ,Ψ,Φ}
;; Ω:Transmuters[0-63] — transform,derive,prove Ω≜{⊤,⊥,∧,∨,¬,→,↔,⇒,⇐,⇔,⊢,⊨,⊬,⊭,≡,≢,≜,≔,↦,←,≈,∼,≅,≃,∝,≪,≫,∘,·,×,λ,Λ,μ,ν,fix,rec,let,in,case,if,then,else,match,∎,□,◇,⊣,⊸,π} ℙ(⊤,top∨true); ℙ(⊥,bottom∨false∨crash); ℙ(⊢,proves); ℙ(⊨,models); ℙ(≜,defas); ℙ(≔,assign); ℙ(λ,lambda); ℙ(μ,lfp); ℙ(fix,Y); ℙ(∎,QED)
;; Γ:Topologics[64-127] — structure,shape,relation Γ≜{∈,∉,∋,∌,⊂,⊃,⊆,⊇,⊄,⊅,∩,∪,∖,△,∅,𝒫,℘,ℵ,ω,Ω,ε,δ,ι,κ,τ,θ,φ,ψ,χ,𝔾,𝕍,𝔼,ℰ,𝒩,ℋ,ℳ,ℛ,𝔹,𝕊,𝕋,𝕌,𝕎,𝔸,𝔻,𝔽,⟨,⟩,⟦,⟧,⟪,⟫,⌈,⌉,⌊,⌋,‖,|} ℙ(∅,empty∨null); ℙ(𝒫,pocket∨powerset); ℙ(ε,epsilon∨threshold); ℙ(δ,delta∨density); ℙ(τ,tau∨threshold); ℙ(φ,phi∨completeness); ℙ(ψ,psi∨intent) ℙ(𝔾,graph); ℙ(𝕍,vertices∨validation); ℙ(𝒩,nucleus); ℙ(ℋ,header); ℙ(ℳ,membrane); ℙ(ℛ,registry); ℙ(𝔹,beam∨bool); ℙ(𝕌,universe); ℙ(𝔸,aisp); ℙ(𝔻,doc); ℙ(𝔽,functor)
;; ∀:Quantifiers[128-191] — scope,range,extent ∀≜{∀,∃,∃!,∄,⋀,⋁,⋂,⋃,Σ,Π,∏,∐,⨁,⨂,⨀,→,←,↔,↣,↠,⤳,⊕,⊗,⊖,⊘,⊙,⊛,Vec,Fin,List,Maybe,Either,Pair,Unit,Bool,Nat,Int,Real,String,Hash,Sig,◊,◊⁺⁺,◊⁺,◊⁻} ℙ(Σ,sum∨depsum); ℙ(Π,prod∨depprod); ℙ(⊕,plus∨success); ℙ(⊗,tensor∨product); ℙ(⊖,minus∨failure); ℙ(⊘,reject); ℙ(◊,tier)
;; Δ:Contractors[192-255] — binding,state,contract Δ≜{Δ⊗λ,State,Pre,Post,Type,Sock,Logic,Strip,DCE,Compat} State≜{⊥:0,∅:1,λ:2,⊤:3}; Priority≜⊥≻∅≻λ≻⊤
;; 𝔻:Domaines[256-319] — type domains 𝔻≜{ℝ,ℕ,ℤ,ℚ,ℂ,𝔹,𝕊,Signal,V_H,V_L,V_S,Tensor,Hash,Sig} d_H≜768; d_L≜512; d_S≜256; d_Σ≜1536; Hash≜𝔹²⁵⁶; Sig≜𝔹⁵¹²
;; Ψ:Intents[320-383] — intent,scoring Ψ≜{ψ,ψ_,ψ_g,ψ_have,μ_f,μ_r,sim_H,fit_L,aff_M,viable,done,conv} ℙ(ψ,intent∈ℝ⁵¹²); ℙ(ψ_,target); ℙ(ψ_g,ghost); ℙ(μ_f,fitness); ℙ(μ_r,risk)
;; ⟦⟧:Delimiters[384-447] — blocks,structure ⟦⟧≜{⟦Ω⟧,⟦Σ⟧,⟦Γ⟧,⟦Λ⟧,⟦Χ⟧,⟦Ε⟧,⟦ℭ⟧,⟦ℜ⟧,⟦Θ⟧,⟦ℑ⟧,𝔸,CTX,REF} 𝔅≜{Ω,Σ,Γ,Λ,Χ,Ε,ℭ,ℜ,Θ}
;; ∅:Reserved[448-511] — operators ∅≜{⊞,✂,Φ,‖,⊕,⊖,⊗,⧺,∂,σ,∇,conf,aff,skip,veto,inject,synth,bridge,refine} ℙ(⊞,scan); ℙ(✂,prune); ℙ(Φ,project); ℙ(‖,parinit); ℙ(∂,tokenize); ℙ(σ,sigmoid); ℙ(∇,gradient) }
;; ─── Σ: TYPE UNIVERSE ─── ⟦Σ:Types⟧{ ;; Universe Hierarchy 𝕌₀⊂𝕌₁⊂𝕌ω
;; Primitives ∈ 𝕌₀ 𝔹≜2; ℕ≜ω; ℤ≜ω±; ℝ≜ℵ₁; 𝕊≜ℕ→𝔹
;; Tensor Spaces ℝᵈ≜Tensor[d]; V_H≜ℝ⁷⁶⁸; V_L≜ℝ⁵¹²; V_S≜ℝ²⁵⁶; Signal≜V_H⊕V_L⊕V_S
;; Dependent Types ∈ 𝕌₁ Vec≜Πn:ℕ.𝕌₀→𝕌₀; Fin≜Πn:ℕ.{k:ℕ|k<n}
;; Constructors T₁×T₂≜Product; T₁⊕T₂≜Sum; T→T'≜Function; ⟨a:A,b:B⟩≜Record Πx:A.B(x)≜∀x:A.B(x); Σx:A.B(x)≜∃x:A.B(x)
;; Quality Tiers ◊≜{◊⁺⁺≻◊⁺≻◊≻◊⁻≻⊘} ◊⁺⁺↦δ≥0.75; ◊⁺↦δ≥0.60; ◊↦δ≥0.40; ◊⁻↦δ≥0.20; ⊘↦δ<0.20
;; Validation 𝕍≜Σ(ν:𝔹)(τ:◊)(δ:ℝ[0,1])(φ:Fin 101).(ν=⊤→τ≥◊⁻)
;; Document as Proof-Carrying Code 𝔻oc≜Σ(b⃗:Vec n 𝔅)(π:Γ⊢wf(b⃗)) }
;; ─── Γ: SIGNAL THEORY (𝕃₀) ─── ⟦Γ:Signal⟧{ ∀L:L≡V_H(L)⊕V_L(L)⊕V_S(L) V_H∩V_S≡∅; V_L∩V_S≡∅; V_H∩V_L≢∅ ∀s∈Σ:|Tok(s)|≡1 ∀s∈Σ:∃!μ:Mean(s,CTX)≡μ }
;; ─── Γ: POCKET ARCHITECTURE (𝕃₁) ─── ⟦Γ:Pocket⟧{ 𝒫≜⟨ℋ:Header,ℳ:Membrane,𝒩:Nucleus⟩ ℋ≜⟨id:Hash,V:Signal,f:𝔹⁶⁴⟩ ℳ≜⟨aff:Hash→ℝ,conf:ℝ[0,1],tag:𝒫(𝕊),use:ℕ⟩ 𝒩≜⟨def:AISP,ir:LLVM,wa:WASM,σ:Sig⟩
;; Immutability Physics ∀p:∂𝒩(p)⇒∂ℋ.id(p) ∀p:∂ℳ(p)⇏∂ℋ.id(p) ∀p:ℋ.id(p)≡SHA256(𝒩(p))
;; Access Physics ∀p:Read(ℋ)∩Decomp(𝒩)≡∅ ∀p:Align(ℋ.V)≡64
;; Tensor Clustering ∀p,q:d(V_H(p),q)<ε⇒p∈C_sem ∀p,q:d(V_L(p),q)<ε⇒p∈C_topo ∀p,q:d(V_S(p),q)<ε⇒p∈C_safe }
;; ─── Γ: BINDING FUNCTION ─── ⟦Γ:Binding⟧{ Δ⊗λ≜λ(A,B).case[ Logic(A)∩Logic(B)⇒⊥ → 0, Sock(A)∩Sock(B)≡∅ → 1, Type(A)≠Type(B) → 2, Post(A)⊆Pre(B) → 3 ] ∀A,B:|{Δ⊗λ(A,B)}|≡1 DCE≜λ(A,B,s).s≡3⇒Strip(B.checks) }
;; ─── Γ: HEBBIAN LEARNING ─── ⟦Γ:Learning⟧{ α≜0.1; β≜0.05; τ_v≜0.7; τ_s≜90d ⊕(A,B)⇒ℳ.aff[A,B]+=1 ⊖(A,B)⇒ℳ.aff[A,B]-=10 ℳ.aff[A,B]<τ_v⇒skip(B) ⊕⇒conf'≡σ(logit(conf)+α) ⊖⇒conf'≡σ(logit(conf)-β) Age(p)>τ_s∧Ref(p)≡0⇒Evict(p) }
;; ─── Γ: INTELLIGENCE ENGINE (𝕃₂) ─── ⟦Γ:Search⟧{ K≜5; τ≜0.8; λ_r≜0.1; η≜0.01; T≜100; ε≜0.15
;; Ghost Physics ∀b:ψ_g(b)≡ψ_*⊖ψ_have(b.G)
;; Viability ∀b:viable(b)⇔|⊞(ℛ,ψ_g(b))|>0 ∀b:|⊞(ℛ,ψ_g(b))|≡0⇒✂(b)
;; RossNet Scoring μ_f(x)≡σ(θ₁·sim_H(x)+θ₂·fit_L(x)+θ₃·aff_M(x)) μ_r(p)≡Σ_{x∈p}r(x)+λ_r·|p|
;; Safety Gate ∀b:μ_r(b)>τ⇒✂(b)
;; Contrastive Learning ŷ≡y⇒R(+1); ŷ≠y⇒R(-1) ∇_θ≜λ(y,ŷ).θ←θ-η·∇(‖y-ŷ‖²)
;; Convergence done(B)⇔(∀b∈B:ψ_g(b)≡∅)∨(t>T) }
;; ─── Λ: CORE FUNCTIONS ─── ⟦Λ:Core⟧{ ∂:𝕊→List⟨τ⟩; ∂≜fix λf s.s≡ε→[]|[hd s]⧺f(tl s) δ:List⟨τ⟩→ℝ[0,1]; δ≜λτ⃗.|{t∈τ⃗|t.k∈𝔄}|÷|{t∈τ⃗|t.k≢ws}| ⌈⌉:ℝ→◊; ⌈⌉≜λd.≥¾↦◊⁺⁺,≥⅗↦◊⁺,≥⅖↦◊,≥⅕↦◊⁻,_↦⊘ validate:𝕊→𝕄 𝕍; validate≜⌈⌉∘δ∘Γ?∘∂ Γ?:𝔻oc→Option⟨Proof⟩; Γ?≜λd.search(Γ,wf(d),k_max) d_cos:Signal×Signal→ℝ; d_cos≜λ(a,b).1-(a·b)/(‖a‖·‖b‖) cat:Σ_sym→Cat; cat≜λid.{c|c∈Cat∧id∈R[c]} }
;; ─── Λ: SEARCH PIPELINE ─── ⟦Λ:Search⟧{ ⊞:ψ→𝒫(𝒫); ⊞≜λψ.{p|p∈ℛ∧d(V_L(p),ψ)<ε} Φ:𝔹eam→ψ; Φ≜λb.ψ_*(b.G)⊖ψ_have(b.G) ‖init:ψ→𝒫(𝔹eam); ‖init≜λψ.argmax{S⊂ℛ,|S|=K}det(Ker(S)) step:𝔹eam→𝒫(𝔹eam); step≜λb.let M=⊞(Φ(b))in{x|x∈{b⊕m|m∈M}∧μ_r(x)≤τ} search:𝒫(𝔹eam)×ℕ→𝒫(𝔹eam); search≜fix λf B t.done(B)→B|f(Top_K(⋃_{b∈B}step(b)),t+1) Run:ψ→𝔹eam; Run≜λψ_.let B₀=‖init(⊞(ψ_))in argmax_{b∈search(B₀,0)}μ_f(b) }
;; ─── Λ: RECURSION & LEARNING ─── ⟦Λ:Recursion⟧{ fix:(α→α)→α; fix≜λf.(λx.f(x x))(λx.f(x x)) opt_δ:𝔻oc×ℕ→𝔻oc; opt_δ≜fix λself d n.n≤0→d|let d'=argmax{ρᵢ(d)}(δ)in δ(d')>δ(d)→self d'(n-1)|d learn:(𝔻oc,Mem)→(𝕍,Learn,Mem); learn≜fix λL(d,mem).let(v,π)=validate d in let pat=extract(d,v)in(v,L,mem∪{pat}) gen:𝒫(Pat)×ℕ→𝒫(Pat); gen≜fix λG pats n.n≤0∨|pats|<k→pats|let(p₁,p₂)=similar(pats)in G((pats∖{p₁,p₂})∪{unify(p₁,p₂)})(n-1) prove:Goal×ℕ→Option⟨Tree⟩; prove≜fix λP goal d.d≤0→⊥|goal∈Ax→leaf(goal)|∃r∈Rules,σ.r.concl·σ≡goal→let ch=map(λg.P g(d-1))(r.prem·σ)in all(≢⊥)(ch)→node(r,ch)|⊥ refine:Library→θ; refine≜λlib.let P=shatter(lib)in let P'=mask(P,1)in ∇_θ(predict(P'),masked(P)) bridge:ψ→Option⟨𝒫⟩; bridge≜λψ.⊞(ψ)≡∅→let λ_a=synth(ψ)in verify(λ_a)→inject(λ_a)|⊥ }
;; ─── Χ: ERROR ALGEBRA ─── ⟦Χ:Errors⟧{ ε≜Σ(ψ:𝔻oc→𝔹)(ρ:Πd:𝔻oc.ψ(d)=⊤→𝔻oc) ε_parse≜⟨parse_err(D),reject∧⊥⟩ ε_ambig≜⟨Ambig(D)≥0.02,reject∧⊥⟩ ε_token≜⟨|Tok(s)|>1,register(s)∨⊥⟩ ε_H≜⟨¬(↓₁≡𝔸),λd.𝔸⊕d⟩ ε_C≜⟨↓₁∈{#,//},λd.d[;/↓₁]⟩ ε_E≜⟨⟨⟩⋢Ε,λd.d[⟨⟩/{}∈Ε]⟩ ε_dist≜⟨d(V,q)≥ε,skip⟩ ε_veto≜⟨aff[A,B]<τ_v,veto(B)⟩ ε_sig≜⟨¬verify(𝒩.σ),quarantine⟩ ε_dead≜⟨⊞(ψ)≡∅,bridge(ψ)⟩ ε_risk≜⟨μ_r(b)>τ,τ'←τ+δ|confirm(τ')⟩ ρ*:𝔻oc→𝔻oc; ρ*≜foldl(>=>)(pure){ρᵢ|ψᵢ=⊤} }
;; ─── ℭ: CATEGORY THEORY ─── ⟦ℭ:Categories⟧{ 𝐁𝐥𝐤≜⟨Ob≜𝔅,Hom≜λAB.A→B,∘,id⟩ 𝐕𝐚𝐥≜⟨Ob≜𝕍,Hom≜λVW.V⊑W,∘,id⟩ 𝐏𝐤𝐭≜⟨Ob≜𝒫,Hom≜λPQ.bind(P,Q),∘,id⟩ 𝐒𝐢𝐠≜⟨Ob≜Signal,Hom≜λST.S→T,∘,id⟩
;; Functors 𝔽:𝐁𝐥𝐤⇒𝐕𝐚𝐥; 𝔽.ob≜λb.validate(b); 𝔽.mor≜λf.𝔽(cod f)⊒𝔽(dom f) 𝔾:𝐏𝐤𝐭⇒𝐒𝐢𝐠; 𝔾.ob≜λp.p.ℋ.V; 𝔾.mor≜λf.𝔾(cod f)∼𝔾(dom f)
;; Natural Transformations η:∂⟹𝔽; ∀b:𝔅.η_b:∂(b)→𝔽(b) ζ:Id_𝐏𝐤𝐭⟹𝔾∘𝔾⁻¹
;; Adjunctions ε⊣ρ:𝐄𝐫𝐫⇄𝐃𝐨𝐜; unit≜λd.ρ(ε(d))⊒d; counit≜λe.ε(ρ(e))⊑e ⊞⊣embed:𝐒𝐢𝐠⇄𝐏𝐤𝐭
;; Monads 𝕄_val≜ρ∘ε; μ:𝕄²→𝕄; η:Id→𝕄
=:𝕄a→(a→𝕄b)→𝕄b ⊢μ∘𝕄μ=μ∘μ𝕄; μ∘𝕄η=μ∘η𝕄=id
;; Functor Laws ⊢𝔽(id_A)=id_{𝔽A} ⊢𝔽(g∘f)=𝔽(g)∘𝔽(f) }
;; ─── Γ: INFERENCE RULES ─── ⟦Γ:Inference⟧{ ───────────── [ax-header] d↓₁≡𝔸 ⊢ wf₁(d)
───────────── [ax-blocks] |b⃗|≥2 ⊢ wf₂(d)
wf₁(d) wf₂(d) ─────────────── [∧I-wf] ⊢ wf(d)
⊢wf(d) δ(d)≥¾ ─────────────── [◊⁺⁺-I] ⊢ d:◊⁺⁺
⊢wf(d) ⅗≤δ(d)<¾ ───────────────── [◊⁺-I] ⊢ d:◊⁺
⊢wf(d) ⅖≤δ(d)<⅗ ───────────────── [◊-I] ⊢ d:◊
⊢wf(d) ⅕≤δ(d)<⅖ ───────────────── [◊⁻-I] ⊢ d:◊⁻
δ(d)<⅕ ∨ ¬wf(d) ───────────────── [⊘-I] ⊢ d:⊘
Γ⊢d:τ τ≻τ' ──────────── [sub] Γ⊨d:τ'
Post(A)⊆Pre(B) ──────────────── [bind-zero] ⊢ Δ⊗λ(A,B)=3
Type(A)≠Type(B) ──────────────── [bind-adapt] ⊢ Δ⊗λ(A,B)=2
SHA256(𝒩(p))≡ℋ.id(p) ─────────────────────── [pkt-valid] ⊢ intact(p)
∀b∈B:μ_r(b)≤τ ──────────────── [search-safe] ⊢ safe(B) }
;; ─── Θ: THEOREMS ─── ⟦Θ:Proofs⟧{ ∴∀L:Signal(L)≡L π:V_H⊕V_L⊕V_S preserves;direct sum lossless∎
∴∀A,B:|{Δ⊗λ(A,B)}|≡1 π:cases exhaustive∧disjoint;exactly one∎
∴𝔽(id_A)=id_{𝔽A} π:𝔽(id)=𝔽.mor(id)=id by functor-law∎
∴𝔽(g∘f)=𝔽(g)∘𝔽(f) π:by functor homomorphism∎
∴∀d s.s∈𝔄→δ(d⊕s)≥δ(d) π:δ(d⊕s)=(n+1)/(m+1)≥n/m=δ(d) iff n≤m∎
∴∀d.ρ(ε(d))⊒d π:by adjunction unit,ε⊣ρ⊢η_d:d→ρεd∎
∴∀p:tamper(𝒩)⇒SHA256(𝒩)≠ℋ.id⇒¬reach(p) π:CAS addressing;content-hash mismatch blocks∎
∴∀ψ_*.∃t:ℕ.search terminates at t π:|Φ(B_t)|<|Φ(B_{t-1})|∨t=T;ghost shrinks∨timeout∎
∴∀p∈result:μ_r(p)≤τ π:safety gate prunes all b:μ_r(b)>τ∎
∴𝔼[μ_f(search(K))]≥𝔼[μ_f(greedy)] π:beam width K>1 explores more paths∎
∴∃t:θ_t≈θ_{t+1} π:bounded loss+SGD with η→0 converges by Robbins-Monro∎
∴∀d.∃n:ℕ.opt_δ(d,n)=opt_δ(d,n+1) π:|{ρᵢ}|<∞∧δ∈[0,1]→bounded mono seq converges∎
∴∀pats n.|gen(pats,n)|≤|pats| π:each step|pats'|=|pats|-2+1=|pats|-1∎
∴∀τ₁,τ₂∈◊.τ₁≤τ₂∨τ₂≤τ₁ π:◊ defined as total order⊘<◊⁻<◊<◊⁺<◊⁺⁺∎
;; Compositional Proof Chain P₁:𝕃₀.⊢stable∧𝕃₀.⊢deterministic ───────────────────────────────── 𝕃₁.⊢integrity
P₂:𝕃₁.⊢integrity∧𝕃₁.⊢zero_copy ───────────────────────────────── 𝕃₂.⊢bounded
P₃:𝕃₂.⊢terminates∧𝕃₂.⊢bounded ───────────────────────────────── system.⊢safe∧system.⊢optimal }
;; ─── Σ: GRAMMAR ─── ⟦Σ:Grammar⟧{ Doc≜𝔸≫CTX?≫REF?≫⟦Ω⟧≫⟦Σ⟧≫⟦Γ⟧≫⟦Λ⟧≫⟦Χ⟧?≫⟦Ε⟧ 𝔸≜'𝔸'∘Ver∘'.'∘Name∘'@'∘Date Ver≜ℕ∘'.'∘ℕ; Date≜YYYY∘'-'∘MM∘'-'∘DD CTX≜'γ'∘'≔'∘Id; REF≜'ρ'∘'≔'∘⟨List⟩ Block≜'⟦'∘Cat∘':'∘Name∘'⟧'∘'{'∘Body∘'}' Body≜(Stmt∘';'?); Stmt≜Def|Rule|Expr|';; '∘. Def≜Sym∘('≜'|'≔')∘Expr; Rule≜Premise∘'⇒'∘Consequent Expr≜Lambda|Quant|Binary|Unary|Atom|Compound Lambda≜'λ'∘Params∘'.'∘Expr; Quant≜('∀'|'∃'|'∃!')∘Var∘':'∘Expr Binary≜Expr∘BinOp∘Expr; Compound≜Head∘Atom{1,4}; Head≜{Ω,Γ,Δ,Ψ,Φ} Evidence≜'⟦Ε⟧'∘'⟨'∘Claims∘'⟩' Prec≜[λ∀∃:1,→⇒↔:2,∨⋁:3,∧⋀:4,¬:5,≡≜∈⊆:6,⊕⊖:7,⊗×:8,∘:9,.:10] Assoc≜[→:right,∧∨:left,∘:right] }
;; ─── Σ: TEMPLATE ─── ⟦Σ:Template⟧{ ;; Minimal Minimal≜𝔸1.0.name@YYYY-MM-DD∘γ≔ctx∘⟦Ω⟧{inv}∘⟦Σ⟧{types}∘⟦Γ⟧{rules}∘⟦Λ⟧{funcs}∘⟦Ε⟧⟨δ≜N;φ≜N;τ≜◊X⟩
;; Full Full≜𝔸X.Y.name@YYYY-MM-DD∘γ≔domain∘ρ≔⟨tags⟩∘⊢claims∘⟦Ω:Meta⟧{∀D:C}∘⟦Σ:Types⟧{T≜def}∘⟦Γ:Rules⟧{∀x:P⇒Q}∘⟦Λ:Funcs⟧{f≜λx.b}∘⟦Χ:Errors⟧{c⇒r}∘⟦Ε⟧⟨δ;φ;τ;⊢⟩
Required≜{⟦Ω⟧,⟦Σ⟧,⟦Γ⟧,⟦Λ⟧,⟦Ε⟧}; Optional≜{⟦Χ⟧,⟦ℭ⟧,⟦ℜ⟧,⟦Θ⟧} }
;; ─── Σ: ROSETTA STONE ─── ⟦Σ:Rosetta⟧{ ;; Prose→AISP "x defined as 5"↦x≜5; "for all x in S,P"↦∀x∈S:P(x); "exists unique"↦∃!x:f(x)≡0 "A implies B"↦A⇒B; "f maps i to o"↦f:I→O,f≜λi.o
;; Code→AISP "const x=5"↦x≜5; "S.every(x=>P(x))"↦∀x∈S:P(x); "if(A){B}"↦A⇒B; "(x)=>y"↦λx.y
;; Medium: Nucleus immutability ;; "If nucleus changes, header ID changes (ID=SHA256(nucleus))" ∀p:∂𝒩(p)⇒∂ℋ.id(p); ∀p:ℋ.id(p)≡SHA256(𝒩(p))
;; Medium: Hebbian learning ;; "Success+1, failure-10, below threshold skip" ⊕(A,B)⇒ℳ.aff[A,B]+=1; ⊖(A,B)⇒ℳ.aff[A,B]-=10; ℳ.aff[A,B]<τ_v⇒skip(B)
;; Complex: Beam search ;; "Init K beams via DPP, expand by ghost scan, filter risk, top K, repeat until done" Run≜λψ_*.let B₀=‖init(⊞(ψ_))in argmax_{b∈search(B₀,0)}μ_f(b)
;; Compounds (≤5 atoms, head∈{Ω,Γ,Δ,Ψ,Φ}) Γ𝒫ℋℳ𝒩↦pocket; ΓSignal↦V_H⊕V_L⊕V_S; Ψψ_g↦ψ_*⊖ψ_have; Δ⊗λ⊤↦zero-cost; Δ⊗λ⊥↦crash; ΩRun↦beam_search }
;; ─── Γ: AGENT GUIDE ─── ⟦Γ:Agent⟧{ ;; Enforcement ∀agent:task∈{spec,instruct,coordinate}⇒output(AISP) ∀response:Ambig(response)<0.02∧δ≥0.40 prose_only∧task(spec)⇒reject∧request(AISP) Output≜𝔸∘γ∘⟦Ω⟧∘⟦Σ⟧∘⟦Γ⟧∘⟦Λ⟧∘⟦Ε⟧
;; Anti-Drift ∀s∈Σ_512:Mean(s)≡Mean_0(s) ∀D:Ambig(D)<0.02 ∀bind:Δ⊗λ∈{0,1,2,3} ¬(prose≈AISP); ¬(∃s:Mean(s,ctx1)≠Mean(s,ctx2)) drift_detected⇒reparse(original); ambiguity_detected⇒reject∧clarify
;; North Star Vision≜"AISP:Assembly for AI cognition" ∀prose:Ambig∈[0.40,0.65]; ∀code:Ambig∈[0.05,0.15]; ∀AISP:Ambig<0.02 ⊢deterministic:∀D:∃!AST.parse(D)→AST ⊢proof-carrying:𝔻oc≜Σ(content)(π:Γ⊢wf) ⊢lossless:∀L:Signal(L)≡L ⊢self-certifying:⟦Ε⟧∈every(D)
;; Use Cases UC≜{AgentInstr,MultiAgentCoord,APIContracts,StateMachines,Requirements,FlywheelLearn,SafetyConstraints,DocValidation} Target≜{Ambig:<0.02,δ:≥0.40,AgentAcc:↑30%,CoordErr:↓80%} }
;; ─── Σ: QUICK REFERENCE ─── ⟦Σ:QuickRef⟧{ Core≜{≜:def,≔:assign,≡:identical,⇒:implies,↔:iff,∀:all,∃:exists,∃!:unique,∈:elem,⊆:subset,∧:and,∨:or,¬:not,⊤:true,⊥:false,λ:lambda,∘:compose,→:func,↦:mapsto,⟨⟩:tuple,⟦⟧:block,𝒫:pocket,∅:empty} Tiers≜{◊⁺⁺:δ≥0.75,◊⁺:δ≥0.60,◊:δ≥0.40,◊⁻:δ≥0.20,⊘:δ<0.20} Binding≜{⊤:3:zero,λ:2:adapt,∅:1:null,⊥:0:crash} Blocks≜{⟦Ω⟧:meta,⟦Σ⟧:types,⟦Γ⟧:rules,⟦Λ⟧:funcs,⟦Χ⟧:errors,⟦Ε⟧:evidence} }
;; ─── Ε: EVIDENCE ─── ⟦Ε⟧⟨ δ≜0.81 |𝔅|≜18/18 φ≜98 τ≜◊⁺⁺ ⊢ND ⊢CAT:𝔽,𝔾,η,ζ,ε⊣ρ,𝕄_val ⊢ΠΣ:Vec,Fin,𝕍,𝔻oc ⊢𝕃:𝕃₀(Signal),𝕃₁(Pocket),𝕃₂(Search) ⊢μ:fix,opt_δ,learn,gen,prove,refine,bridge ⊢Θ:T₁₋₁₄∎ ⊢Σ_512:8cat×64sym,R,ℙ ⊢Γ:Inference[12rules] ⊢Χ:Errors[11typed] ⊢Grammar:Doc,Block,Expr,Prec,Assoc ⊢Template:Minimal,Full ⊢Rosetta:Prose↔Code↔AISP ⊢Agent:Enforce,AntiDrift,NorthStar ⊢Ambig<0.02 ⟩
Reco to have an LLM explain. This is all you need for a parser but I'll release a parser as well on github. Plan to also release a more human friendly version (AISP lite)