|
from keras.models import Sequential |
|
from keras.layers.core import Flatten, Dense, Dropout |
|
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D |
|
from keras.optimizers import SGD |
|
import cv2, numpy as np |
|
|
|
def VGG_16(weights_path=None): |
|
model = Sequential() |
|
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224))) |
|
model.add(Convolution2D(64, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(64, 3, 3, activation='relu')) |
|
model.add(MaxPooling2D((2,2), strides=(2,2))) |
|
|
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(128, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(128, 3, 3, activation='relu')) |
|
model.add(MaxPooling2D((2,2), strides=(2,2))) |
|
|
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(256, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(256, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(256, 3, 3, activation='relu')) |
|
model.add(MaxPooling2D((2,2), strides=(2,2))) |
|
|
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(512, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(512, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(512, 3, 3, activation='relu')) |
|
model.add(MaxPooling2D((2,2), strides=(2,2))) |
|
|
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(512, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(512, 3, 3, activation='relu')) |
|
model.add(ZeroPadding2D((1,1))) |
|
model.add(Convolution2D(512, 3, 3, activation='relu')) |
|
model.add(MaxPooling2D((2,2), strides=(2,2))) |
|
|
|
model.add(Flatten()) |
|
model.add(Dense(4096, activation='relu')) |
|
model.add(Dropout(0.5)) |
|
model.add(Dense(4096, activation='relu')) |
|
model.add(Dropout(0.5)) |
|
model.add(Dense(1000, activation='softmax')) |
|
|
|
if weights_path: |
|
model.load_weights(weights_path) |
|
|
|
return model |
|
|
|
if __name__ == "__main__": |
|
im = cv2.resize(cv2.imread('cat.jpg'), (224, 224)).astype(np.float32) |
|
im[:,:,0] -= 103.939 |
|
im[:,:,1] -= 116.779 |
|
im[:,:,2] -= 123.68 |
|
im = im.transpose((2,0,1)) |
|
im = np.expand_dims(im, axis=0) |
|
|
|
# Test pretrained model |
|
model = VGG_16('vgg16_weights.h5') |
|
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True) |
|
model.compile(optimizer=sgd, loss='categorical_crossentropy') |
|
out = model.predict(im) |
|
print np.argmax(out) |
file is in user's trash