Last active
November 30, 2017 06:46
-
-
Save barche/9cc583ad85dd2d02782642af04f44dd7 to your computer and use it in GitHub Desktop.
Julia implementation of https://devblogs.nvidia.com/parallelforall/unified-memory-cuda-beginners/, first using pointers and then using a custom `UnifiedArray` type.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Version using only CUDAdrv | |
using CUDAdrv, CUDAnative | |
using BenchmarkTools | |
const N = 1000000 | |
function kernel_init(A, B, numElements) | |
i = (blockIdx().x-1) * blockDim().x + threadIdx().x | |
if i <= numElements | |
A[i] = 1.0f0 | |
B[i] = 2.0f0 | |
end | |
return | |
end | |
function kernel_add(A, B, C, numElements) | |
i = (blockIdx().x-1) * blockDim().x + threadIdx().x | |
if i <= numElements | |
C[i] = A[i] + B[i] | |
end | |
return | |
end | |
function allocate(T=Float32) | |
A = CuArray{T}(N) | |
B = CuArray{T}(N) | |
C = CuArray{T}(N) | |
return A, B, C | |
end | |
function check(C) | |
result = 0.0f0 | |
for c in C | |
t = abs(c-3.0f0) | |
if t > result | |
result = t | |
end | |
end | |
return result | |
end | |
blockSize = 1024; | |
numBlocks = (N + blockSize - 1) ÷ blockSize; | |
init!(A, B) = @cuda (numBlocks,blockSize) kernel_init(A, B, N) | |
add!(C,A,B) = @cuda (numBlocks,blockSize) kernel_add(A, B, C, N) | |
function run_kernels(A,B,C) | |
init!(A,B) | |
add!(C,A,B) | |
end | |
println("allocation time:") | |
A,B,C = @btime allocate() samples=1 evals=1 | |
println("kernels total time:") | |
@btime run_kernels($A,$B, $C) samples=10 evals=1 | |
println("copy from device time") | |
C_cpu = @btime Array(C) samples=1 evals=1 | |
println("check time") | |
testresult = @btime check($C_cpu) samples=1 evals=1 | |
@show testresult |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using CUDAdrv, CUDAnative | |
import CUDArt | |
using BenchmarkTools | |
const N = 1000000 | |
ctx = CuContext(first(devices())) | |
function kernel_init(a, b, numElements) | |
i = (blockIdx().x-1) * blockDim().x + threadIdx().x | |
if i <= numElements | |
Base.pointerset(a, 1.0f0, i, 8) | |
Base.pointerset(b, 2.0f0, i, 8) | |
end | |
return | |
end | |
function kernel_add(a, b, c, numElements) | |
i = (blockIdx().x-1) * blockDim().x + threadIdx().x | |
if i <= numElements | |
a_val = Base.pointerref(a, i, 8) | |
b_val = Base.pointerref(b, i, 8) | |
Base.pointerset(c, a_val + b_val, i, 8) | |
end | |
return | |
end | |
function cudaMemPrefetchAsync(devPtr, size, dev=device(CuCurrentContext()), stream=CUDArt.null_stream) | |
CUDArt.rt.checkerror(ccall((:cudaMemPrefetchAsync,CUDArt.libcudart),CUDArt.rt.cudaError_t,(Ptr{Void},Csize_t,Cint,CUDArt.rt.cudaStream_t),devPtr.ptr,size,dev.handle,stream)) | |
end | |
function managed_alloc{T}(::Type{T}, n_elems) | |
p = Ref{Ptr{Void}}(C_NULL) | |
CUDArt.rt.cudaMallocManaged(p, n_elems*sizeof(T), CUDArt.rt.cudaMemAttachGlobal); | |
return DevicePtr{T}(Base.unsafe_convert(Ptr{T}, p[]), CuCurrentContext()) | |
end | |
function allocate(T=Float32) | |
A = managed_alloc(T, N) | |
B = managed_alloc(T, N) | |
C = managed_alloc(T, N) | |
cudaMemPrefetchAsync(A,N*sizeof(Float32)) | |
cudaMemPrefetchAsync(B,N*sizeof(Float32)) | |
cudaMemPrefetchAsync(C,N*sizeof(Float32)) | |
return A, B, C | |
end | |
function check(C) | |
result = 0.0f0 | |
c_ptr = Base.unsafe_convert(Ptr{Float32}, C) | |
for i in 1:N | |
c = Base.pointerref(c_ptr, i, 8) | |
t = abs(c-3.0f0) | |
if t > result | |
result = t | |
end | |
end | |
return result | |
end | |
blockSize = 1024; | |
numBlocks = (N + blockSize - 1) ÷ blockSize; | |
function init!(A, B) | |
@cuda (numBlocks,blockSize) kernel_init(A, B, N) | |
end | |
function add!(C,A,B) | |
@cuda (numBlocks,blockSize) kernel_add(A, B, C, N) | |
end | |
function run_kernels(A,B,C) | |
init!(A,B) | |
add!(C,A,B) | |
CUDArt.device_synchronize() | |
end | |
println("allocation time:") | |
A,B,C = @btime allocate() samples=1 evals=1 | |
println("kernels total time:") | |
@btime run_kernels($A,$B, $C) samples=10 evals=1 | |
println("check time") | |
testresult = @btime check($C) samples=1 evals=1 | |
@show testresult |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using CUDAdrv, CUDAnative | |
using BenchmarkTools | |
function cuMemPrefetchAsync(devPtr, size, dev=device(CuCurrentContext()), stream=CUDAdrv.CuDefaultStream()) | |
CUDAdrv.@apicall(:cuMemPrefetchAsync, (Ptr{Void}, Csize_t, CUDAdrv.CuDevice_t, CUDAdrv.CuStream_t), devPtr,size,dev.handle,stream) | |
end | |
function managed_alloc{T}(::Type{T}, n_elems) | |
p = Ref{Ptr{Void}}(C_NULL) | |
CU_MEM_ATTACH_GLOBAL = Cuint(0x1) | |
CUDAdrv.@apicall(:cuMemAllocManaged, (Ptr{Ptr{Void}}, Csize_t, Cuint), p, n_elems*sizeof(T), CU_MEM_ATTACH_GLOBAL) | |
return p[] | |
end | |
struct UnifiedArray{T,N} <: AbstractArray{T,N} | |
ptr::Ptr{T} | |
size::NTuple{N,Int} | |
end | |
UnifiedArray{T,N}(d::NTuple{N,Int}) where {T,N} = UnifiedArray{T,N}(managed_alloc(T, prod(d)), d) | |
UnifiedArray{T}(m::Int) where {T} = UnifiedArray{T,1}((m,)) | |
Base.IndexStyle(::Type{<:UnifiedArray}) = IndexLinear() | |
Base.size(arr::UnifiedArray) = arr.size | |
Base.checkbounds(::UnifiedArray, I...) = nothing | |
@inline function Base.getindex(arr::UnifiedArray{T}, index::Int) where {T} | |
@boundscheck checkbounds(arr, index) | |
return Base.pointerref(arr.ptr, index, 8)::T | |
end | |
@inline function Base.setindex!(arr::UnifiedArray{T}, val, index::Int) where {T} | |
@boundscheck checkbounds(arr, index) | |
Base.pointerset(arr.ptr, val, index, 8) | |
end | |
function prefetch(arr::UnifiedArray{T}) where T | |
cuMemPrefetchAsync(arr.ptr, prod(size(arr))*sizeof(T)) | |
end | |
const N = 1000000 | |
ctx = CuContext(first(devices())) | |
function kernel_init(A, B) | |
i = (blockIdx().x-1) * blockDim().x + threadIdx().x | |
if i <= length(A) | |
A[i] = 1.0f0 | |
B[i] = 2.0f0 | |
end | |
return | |
end | |
function kernel_add(A, B, C) | |
i = (blockIdx().x-1) * blockDim().x + threadIdx().x | |
if i <= length(A) | |
C[i] = A[i] + B[i] | |
end | |
return | |
end | |
function allocate(T=Float32) | |
A = UnifiedArray{T}(N) | |
B = UnifiedArray{T}(N) | |
C = UnifiedArray{T}(N) | |
prefetch(A) | |
prefetch(B) | |
prefetch(C) | |
return A, B, C | |
end | |
function check(C) | |
result = 0.0f0 | |
for c in C | |
t = abs(c-3.0f0) | |
if t > result | |
result = t | |
end | |
end | |
return result | |
end | |
blockSize = 1024; | |
numBlocks = (N + blockSize - 1) ÷ blockSize; | |
function init!(A, B) | |
@cuda (numBlocks,blockSize) kernel_init(A, B) | |
end | |
function add!(C,A,B) | |
@cuda (numBlocks,blockSize) kernel_add(A, B, C) | |
end | |
function run_kernels(A,B,C) | |
init!(A,B) | |
add!(C,A,B) | |
synchronize() | |
end | |
println("allocation time:") | |
A,B,C = @btime allocate() samples=1 evals=1 | |
println("kernels total time:") | |
@btime run_kernels($A,$B, $C) samples=10 evals=1 | |
println("check time") | |
testresult = @btime check($C) samples=1 evals=1 | |
@show testresult |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment