Created
November 22, 2013 02:29
-
-
Save barrucadu/7593799 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Markov Chain. | |
Pass input to stdin. | |
Usage: | |
markov <len> [-n <n>] [-p <p>] [-c] [-s <s>] | |
markov -h | --help | |
Options: | |
<len> The length (in tokens) of the output to generate | |
-n <n> The number of symbols to look at in generation [default: 1] | |
-p <p> The probability to pick a random token [default: 0.05] | |
-c Split input per character, rather than per word | |
-s <s> Random seed [default: system time] | |
-h --help Show this screen | |
""" | |
from docopt import docopt | |
import sys | |
from time import time | |
from itertools import islice | |
from markov import Markov | |
if __name__ == "__main__": | |
arguments = docopt(__doc__) | |
n = int(arguments["-n"]) | |
p = float(arguments["-p"]) | |
try: | |
s = int(arguments["-s"]) | |
except: | |
s = int(time()) | |
if p > 1 or p < 0: | |
print("p must be in the range 0 to 1 (inclusive)") | |
sys.exit(1) | |
if n < 0: | |
print("n must be greater than 0") | |
sys.exit(1) | |
training_data = sys.stdin.read() | |
if not arguments["-c"]: | |
training_data = training_data.split() | |
m = Markov(n=n, p=p, seed=s) | |
m.train(training_data) | |
print("Seed: ", s) | |
out = islice(m, int(arguments["<len>"])) | |
if arguments["-c"]: | |
out = "".join(out) | |
else: | |
out = " ".join(out) | |
print(out) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
class Markov: | |
def __init__(self, n, p, seed): | |
self.n = n | |
self.p = p | |
self.seed = seed | |
self.data = {} | |
def train(self, training_data): | |
prev = () | |
for token in training_data: | |
for pprev in [prev[i:] for i in range(len(prev) + 1)]: | |
if not pprev in self.data: | |
self.data[pprev] = [] | |
self.data[pprev].append(token) | |
prev += (token,) | |
if len(prev) > self.n: | |
prev = prev[1:] | |
def __iter__(self): | |
random.seed(self.seed) | |
self.prev = () | |
return self | |
def __next__(self): | |
if self.prev == () or random.random() < self.p: | |
next = random.choice(self.data[()]) | |
else: | |
try: | |
next = random.choice(self.data[self.prev]) | |
except: | |
self.prev = () | |
next = random.choice(self.data[self.prev]) | |
self.prev += (next,) | |
if len(self.prev) > self.n: | |
self.prev = self.prev[1:] | |
return next |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment