Created
September 4, 2020 06:26
-
-
Save bartvollebregt/f37d362860ae309e1bc1b69b15597e23 to your computer and use it in GitHub Desktop.
Yolov5 to .tflite
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
def wrap_frozen_graph(graph_def, inputs, outputs): | |
def _imports_graph_def(): | |
tf.compat.v1.import_graph_def(graph_def, name="") | |
wrapped_import = tf.compat.v1.wrap_function(_imports_graph_def, []) | |
import_graph = wrapped_import.graph | |
return wrapped_import.prune( | |
tf.nest.map_structure(import_graph.as_graph_element, inputs), | |
tf.nest.map_structure(import_graph.as_graph_element, outputs)) | |
with tf.io.gfile.GFile("runs/exp5/weights/best.pb", "rb") as f: | |
graph_def = tf.compat.v1.GraphDef() | |
loaded = graph_def.ParseFromString(f.read()) | |
frozen_func = wrap_frozen_graph(graph_def=graph_def, | |
inputs=["images:0"], | |
outputs=['output:0','424:0', '444:0']) | |
converter = tf.lite.TFLiteConverter.from_concrete_functions([frozen_func]) | |
# converter.allow_custom_ops = True | |
# converter.experimental_new_converter = True | |
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS] | |
converter.optimizations = [tf.lite.Optimize.DEFAULT] | |
tf_lite_model = converter.convert() | |
open('runs/exp5/weights/best.tflite', 'wb').write(tf_lite_model) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment