Skip to content

Instantly share code, notes, and snippets.

@basvandijk
Created October 3, 2011 09:00
Show Gist options
  • Save basvandijk/1258740 to your computer and use it in GitHub Desktop.
Save basvandijk/1258740 to your computer and use it in GitHub Desktop.
{-# LANGUAGE DeriveDataTypeable #-}
-- |
-- Module : Data.Attoparsec.Text.Number
-- Copyright : Bryan O'Sullivan 2011, Bas van Dijk 2011
-- License : BSD3
--
-- Maintainer : [email protected]
-- Stability : experimental
-- Portability : unknown
--
-- A simple number type, useful for parsing both exact and inexact
-- quantities without losing precision.
module Data.Attoparsec.Text.Number
(
Number(..)
) where
import Control.DeepSeq (NFData(rnf))
import Data.Data (Data)
import Data.Typeable (Typeable)
import Data.Ratio ((%))
-- | A numeric type that can represent integers accurately, and
-- floating point numbers to the precision of a 'Double'.
data Number = I !Integer
| R !Rational
deriving (Typeable, Data)
instance Show Number where
show (I a) = show a
show (R a) = show a
instance NFData Number where
rnf (I _) = ()
rnf (R _) = ()
{-# INLINE rnf #-}
binop :: (Integer -> Integer -> a)
-> (Rational -> Rational -> a)
-> (Number -> Number -> a)
binop _ r (R a) (R b) = r a b
binop i _ (I a) (I b) = i a b
binop _ r (R a) (I b) = r a (fromIntegral b)
binop _ r (I a) (R b) = r (fromIntegral a) b
{-# INLINE binop #-}
instance Eq Number where
(==) = binop (==) (==)
{-# INLINE (==) #-}
(/=) = binop (/=) (/=)
{-# INLINE (/=) #-}
instance Ord Number where
(<) = binop (<) (<)
{-# INLINE (<) #-}
(<=) = binop (<=) (<=)
{-# INLINE (<=) #-}
(>) = binop (>) (>)
{-# INLINE (>) #-}
(>=) = binop (>=) (>=)
{-# INLINE (>=) #-}
compare = binop compare compare
{-# INLINE compare #-}
instance Num Number where
(+) = binop (((I$!).) . (+)) (((R$!).) . (+))
{-# INLINE (+) #-}
(-) = binop (((I$!).) . (-)) (((R$!).) . (-))
{-# INLINE (-) #-}
(*) = binop (((I$!).) . (*)) (((R$!).) . (*))
{-# INLINE (*) #-}
abs (I a) = I $! abs a
abs (R a) = R $! abs a
{-# INLINE abs #-}
negate (I a) = I $! negate a
negate (R a) = R $! negate a
{-# INLINE negate #-}
signum (I a) = I $! signum a
signum (R a) = R $! signum a
{-# INLINE signum #-}
fromInteger = (I$!) . fromInteger
{-# INLINE fromInteger #-}
instance Real Number where
toRational (I a) = fromIntegral a
toRational (R a) = a
{-# INLINE toRational #-}
instance Fractional Number where
fromRational = (R$!)
{-# INLINE fromRational #-}
(/) = binop (((R$!).) . (%))
(((R$!).) . (/))
{-# INLINE (/) #-}
recip (I a) = R $! recip (fromIntegral a)
recip (R a) = R $! recip a
{-# INLINE recip #-}
instance RealFrac Number where
properFraction (I a) = (fromIntegral a,0)
properFraction (R a) = case properFraction a of
(i,d) -> (i,R d)
{-# INLINE properFraction #-}
truncate (I a) = fromIntegral a
truncate (R a) = truncate a
{-# INLINE truncate #-}
round (I a) = fromIntegral a
round (R a) = round a
{-# INLINE round #-}
ceiling (I a) = fromIntegral a
ceiling (R a) = ceiling a
{-# INLINE ceiling #-}
floor (I a) = fromIntegral a
floor (R a) = floor a
{-# INLINE floor #-}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment