Created
February 12, 2020 14:03
-
-
Save bayerj/4f8d2da5325cf0c69626ee302a0fd8f7 to your computer and use it in GitHub Desktop.
Learning step with non-diff'able parameters.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import jax | |
import jax.experimental.optimizers | |
from jax.api import _check_inexact_input_vjp | |
from jax import tree_util as tu | |
import numpy as onp | |
def make_resilient_step(loss, sample_params, split, join, optimizer): | |
sample_learn_params, non_learn_params = split(sample_params) | |
def guarded_loss(learn_params, *args, **kwargs): | |
params = join(learn_params, non_learn_params) | |
return loss(params, *args, **kwargs) | |
d_guarded_loss = jax.grad(guarded_loss) | |
opt_init, opt_update, get_params = optimizer | |
opt_state = opt_init(sample_learn_params) | |
@jax.jit | |
def step(opt_state, *args, **kwargs): | |
params = get_params(opt_state) | |
loss = guarded_loss(params, *args, **kwargs) | |
g = d_guarded_loss(params, *args, **kwargs) | |
return loss, opt_update(1, g, opt_state) | |
return opt_state, step | |
def func(params): | |
return params["c"] ** 2 * params["d"] | |
def split(params): | |
def tell_include(leaf): | |
return jax.dtypes.issubdtype( | |
jax.core.get_aval(leaf).dtype, onp.inexact | |
) | |
flattened, tree_def = tu.tree_flatten(params) | |
to_include = [i for i in flattened if tell_include(i)] | |
to_exclude_and_idxs = [ | |
(i, val) for i, val in enumerate(flattened) if not tell_include(val) | |
] | |
return to_include, (tree_def, to_exclude_and_idxs) | |
def join(included, excluded): | |
tree_def, excluded_leaves = excluded | |
all_leaves = included.copy() | |
for idx, leave in excluded_leaves: | |
all_leaves.insert(idx, leave) | |
return tu.tree_unflatten(tree_def, all_leaves) | |
optimizer = ( | |
opt_init, | |
opt_update, | |
get_params, | |
) = jax.experimental.optimizers.adam(step_size=0.01) | |
initial_params = {"c": 2.0, "d": 1} | |
opt_state, step = make_resilient_step( | |
func, | |
initial_params, | |
split=split, | |
join=join, | |
optimizer=optimizer, | |
) | |
for i in range(1000): | |
l, opt_state = step(opt_state) | |
pars = get_params(opt_state) | |
final_pars = join(pars, split(initial_params)[1]) | |
print(final_pars) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment