Last active
February 25, 2016 19:12
-
-
Save bayesball/6562e43b7c412ec2031d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # functions to compute and graph component estimates of a batting average | |
| # Jim Albert | |
| # JQAS paper "Improved Component Predictions of Batting and Pitching Measures" | |
| fit_comp_half <- function(d){ | |
| # input d - a list with components playerID, AB, H, HR, SO | |
| # output - a list with components | |
| # S - a data frame with all of the component and shrinkage estimates | |
| # component -- values of K and eta for all the component fits | |
| # shrinkage -- values of K and eta for the shrinkage fit | |
| require(dplyr) | |
| require(LearnBayes) | |
| ## ------------------------------------------------------------------------ | |
| fit.model <- function(data){ | |
| mode <- laplace(betabinexch, c(1, 1), | |
| cbind(data$y, data$n))$mode | |
| eta <- exp(mode[1]) / (1 + exp(mode[1])) | |
| K <- exp(mode[2]) | |
| list(eta=eta, K=K, | |
| d=data.frame(data, est=(data$y + K * eta) / (data$n + K))) | |
| } | |
| ## ------------------------------------------------------------------------ | |
| S.SO <- fit.model(data.frame(playerID=d$playerID, | |
| y=d$SO, n=d$AB)) | |
| S.HR <- fit.model(data.frame(playerID=d$playerID, | |
| y=d$HR, n=d$AB - d$SO)) | |
| S.H <- fit.model(data.frame(playerID=d$playerID, | |
| y=d$H - d$HR, | |
| n=d$AB - d$HR - d$SO)) | |
| S <- merge(S.SO$d, S.HR$d, by="playerID") | |
| S <- merge(S, S.H$d, by="playerID") | |
| names(S) <- c("playerID", "SO", "AB", "SO.Rate", | |
| "HR", "AB.SO", "HR.Rate", | |
| "H.HR", "AB.SO.HR", "H.Rate") | |
| component.fit <- data.frame(eta=c(S.SO$eta, S.HR$eta, S.H$eta), | |
| K=c(S.SO$K, S.HR$K, S.H$K)) | |
| row.names(component.fit) <- c("SO", "HR", "H") | |
| ## ------------------------------------------------------------------------ | |
| S$Est <- with(S, | |
| (1 - SO.Rate) * (HR.Rate + (1 - HR.Rate) * H.Rate)) | |
| ## ------------------------------------------------------------------------ | |
| S2 <- fit.model(data.frame(playerID=d$playerID, | |
| y=d$H, n=d$AB)) | |
| shrinkage.fit <- c(eta=S2$eta, K=S2$K) | |
| S <- merge(S, S2$d, by="playerID") | |
| names(S)[c(11:14)] <- c("Comp.Est", "H", "AB1", "Shrinkage.Est") | |
| list(S=S, component=component.fit, shrinkage=shrinkage.fit) | |
| } | |
| plot_avg_results2 <- function(fitwork){ | |
| # function to plot the results from fit_comp_half | |
| # will construct a graph of the observed One Minus SO.Rate and HIP Rate | |
| # also constructs a graph of the estimates of One Minus SO.Rate and HIP Rate | |
| # returns the variables of the two plots (can use grid.arrange to put them together) | |
| ## ------------------------------------------------------------------------ | |
| require(ggplot2) | |
| require(dplyr) | |
| S <- fitwork$S | |
| myf <- function(x, p) p / x | |
| AVG1 <- data.frame(P=.25, x=seq(.6, 1, .01), y=myf(seq(.6, 1, .01), .25)) | |
| AVG2 <- data.frame(P=.3, x=seq(.6, 1, .01), y=myf(seq(.6, 1, .01), .3)) | |
| AVG3 <- data.frame(P=.2, x=seq(.6, 1, .01), y=myf(seq(.6, 1, .01), .2)) | |
| AVG4 <- data.frame(P=.35, x=seq(.6, 1, .01), y=myf(seq(.6, 1, .01), .35)) | |
| AVG5 <- data.frame(P=.4, x=seq(.6, 1, .01), y=myf(seq(.6, 1, .01), .4)) | |
| AVG <- rbind(AVG1, AVG2, AVG3, AVG4, AVG5) | |
| AVG <- mutate(AVG, BA=factor(P)) | |
| d1 <- data.frame(Type="Observed BA", | |
| One.Minus.SO.Rate=1 - S$SO / S$AB, | |
| H.Rate=S$H / S$AB.SO, | |
| AB=S$AB) | |
| d2 <- data.frame(Type="Predicted BA", | |
| One.Minus.SO.Rate=1 - S$SO.Rate, | |
| H.Rate=S$HR.Rate + (1 - S$HR.Rate) * S$H.Rate, | |
| AB=S$AB) | |
| Xlow <- range(c(d1$One.Minus.SO.Rate, d2$One.Minus.SO.Rate)) | |
| Ylow <- range(c(d1$H.Rate, d2$H.Rate)) | |
| p1 <- ggplot(d1, aes(One.Minus.SO.Rate, H.Rate)) + | |
| geom_point() + | |
| geom_line(data=AVG, aes(x, y, color=BA)) + | |
| ylim(Ylow[1], Ylow[2]) + xlim(Xlow[1], Xlow[2]) + | |
| ggtitle("Observed BA") + | |
| labs(y = "Hits in Non-SO-AB Rate") | |
| print(p1) | |
| p2 <- ggplot(d2, aes(One.Minus.SO.Rate, H.Rate)) + | |
| geom_point(color="red") + | |
| geom_line(data=AVG, aes(x, y, color=BA)) + | |
| ylim(Ylow[1], Ylow[2]) + xlim(Xlow[1], Xlow[2]) + | |
| ggtitle("Predicted BA") + | |
| labs(y = "Hits in Non-SO-AB Rate") | |
| print(p2) | |
| list(plot1=p1, plot2=p2) | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment