Last active
July 18, 2024 14:44
-
-
Save bayesball/7401c84b0d8fa1aab409df31842ceb51 to your computer and use it in GitHub Desktop.
R function for implementing posterior predictive simulation of individual home run counts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
prediction_normal <- function(S, games, f_games){ | |
# data frame S contains batter, BIP, HR for | |
# first part of season | |
# games - average number of games already played | |
# f_games - number of future games played | |
# need to have the JAGS software installed | |
# https://mcmc-jags.sourceforge.io/ | |
library(readr) | |
library(dplyr) | |
library(ggplot2) | |
library(runjags) | |
library(coda) | |
library(purrr) | |
library(tidyr) | |
JAGS_data <- list(N = nrow(S), | |
HR = S$HR, | |
BIP = S$BIP) | |
modelString <-" | |
model { | |
## sampling | |
for (i in 1:N){ | |
HR[i] ~ dbin(p[i], BIP[i]) | |
logit(p[i]) <- alpha[i] | |
alpha[i] ~ dnorm(theta, invtau2) | |
} | |
theta ~ dnorm(0, 0.001) | |
invtau2 <- 1 / (tau * tau) | |
tau ~ dt(0, 1, 1) T(0, ) | |
} | |
" | |
# run JAGS, collecting 5000 draws from posterior | |
posterior <- run.jags(modelString, | |
n.chains = 1, | |
data = JAGS_data, | |
monitor = c("theta", "alpha", "tau"), | |
adapt = 1000, | |
burnin = 2000, | |
sample = 5000) | |
# obtain data frame of simulated draws | |
posterior %>% as.mcmc() %>% | |
as.data.frame() -> post2 | |
# implements one posterior predictive simulation | |
one_sim <- function(j, BIP){ | |
invlogit <- function(y){ | |
exp(y) / (1 + exp(y)) | |
} | |
alpha <- post2[j, 2:(JAGS_data$N - 1)] | |
p_sim <- unlist(invlogit(alpha)) | |
data.frame(Sim = j, | |
batter = S$batter, | |
HR = rbinom(JAGS_data$N, size = BIP, | |
prob = p_sim)) | |
} | |
# figure out future BIP | |
S |> | |
mutate(fBIP = round(BIP * f_games / games)) -> S | |
# simulate 500 from the posterior predictive distribution | |
HR_future <- map(sample(1:5000, 500), one_sim, | |
S$fBIP) |> | |
list_rbind() | |
# add known HR counts | |
inner_join(HR_future, S, by = "batter") |> | |
mutate(HR_final = HR.x + HR.y) -> HR_future | |
# interested in (1) max HR, (2) # >= 40, (3) # >= 30, | |
# (4) # >= 20 | |
HR_future |> | |
group_by(Sim) |> | |
summarize(HR_Leading = max(HR_final), | |
HR_Count_GE_20 = sum(HR_final >= 20), | |
HR_Count_GE_30 = sum(HR_final >= 30), | |
HR_Count_GE_40 = sum(HR_final >= 40) ) -> S_future | |
# pivot longer | |
S_future |> | |
pivot_longer( | |
cols = starts_with("HR"), | |
names_to = "Type", | |
values_to = "Measure" | |
) -> S_graph | |
# interval estimates | |
S_graph |> | |
group_by(Type) |> | |
summarize(LO = quantile(Measure, 0.05), | |
HI = quantile(Measure, 0.95), | |
Prob = mean(Measure >= LO & Measure <= HI)) -> | |
interval_estimates | |
# display of prediction distributions | |
myplot <- ggplot(S_graph, aes(Measure)) + | |
geom_density(color = "red") + | |
facet_wrap(~ Type, scales = "free") + | |
labs(title = "Predictions of Final Season Totals") + | |
theme(text=element_text(size=18)) + | |
theme(plot.title = element_text(colour = "blue", size = 18, | |
hjust = 0.5, vjust = 0.8, angle = 0)) | |
# output the interval estimates and the plot | |
list(interval_estimates = interval_estimates, | |
plot = myplot) | |
} | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment