Created
April 6, 2024 15:29
-
-
Save bayesball/8ec179cd3b7b86bd849f047e07362680 to your computer and use it in GitHub Desktop.
Illustration of two algorithms for predicting home runs from distance and spray angle
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# load some packages | |
library(dplyr) | |
library(ggplot2) | |
library(mgcv) | |
library(janitor) | |
library(metR) | |
# have Statcast data through games of April 5, 2024 | |
statcast2024 |> filter(hit_distance_sc >= 300, | |
type == "X") |> | |
mutate(HR = ifelse(events == "home_run", | |
1, 0), | |
location_x = 2.5 * (hc_x - 125.42), | |
location_y = 2.5 * (198.27 - hc_y), | |
spray_angle = atan(location_x / location_y) * 180 / pi | |
) -> sc_ip_300 | |
ii <- is.na(sc_ip_300$spray_angle) | |
sc_ip_300 <- sc_ip_300[!ii, ] | |
# fit logistic model | |
lm_fit <- glm(HR ~ hit_distance_sc + | |
spray_angle + I(spray_angle ^ 2), | |
family = binomial, | |
data = sc_ip_300) | |
coef(lm_fit) | |
# plot fit on a grid | |
grid <- expand.grid(hit_distance_sc = | |
seq(300, 450, length = 50), | |
spray_angle = seq(-45, 45, length = 50)) | |
grid$lp <- predict(lm_fit, grid, type = "response") | |
ggplot(grid, aes(x = spray_angle, y = hit_distance_sc, | |
z = lp)) + | |
geom_contour_fill(breaks = seq(0, 1, by = .05)) + | |
scale_fill_distiller(palette="Spectral") + | |
theme(text=element_text(size=18)) + | |
ggtitle("Contours of P(HR) from Linear Model") + | |
theme(plot.title = element_text(colour = "blue", size = 18, | |
hjust = 0.5, vjust = 0.8, angle = 0)) | |
## observe some interesting patterns in HR counts | |
sc_ip_300$SA <- cut(sc_ip_300$spray_angle, | |
breaks = seq(-50, 50, by = 5)) | |
tabyl(sc_ip_300, SA, HR) | |
## one posterior predictive simulation | |
mn <- lm_fit$coefficients | |
v <- vcov(lm_fit) | |
X <- as.matrix(data.frame(1, lm_fit$model[, -1])) | |
N <- nrow(X) | |
invlogit <- function(y){ | |
exp(y) / (1 + exp(y)) | |
} | |
one_sim <- function(){ | |
beta <- t(rmnorm(1, mn, v)) | |
p <- invlogit(X %*% beta) | |
HR <- rbinom(N, size = 1, prob = p) | |
df <- data.frame(HR = HR, | |
SA = sc_ip_300$SA) | |
sd(tabyl(df, SA, HR)[[3]]) | |
} | |
# run the predictive simulation 1000 times and | |
# display predictive plot | |
pred_SD <- replicate(1000, one_sim()) | |
obs_SD <- sd(tabyl(sc_ip_300, SA, HR)[[3]]) | |
ggplot(data.frame(Predicted = pred_SD), | |
aes(Predicted)) + | |
geom_histogram(color = "white", fill = "tan", | |
bins = 12) + | |
geom_vline(xintercept = obs_SD, color = "red", | |
linewidth = 2) + | |
theme(text=element_text(size=18)) + | |
ggtitle("Predictions of SD from Linear Model") + | |
theme(plot.title = element_text(colour = "blue", size = 18, | |
hjust = 0.5, vjust = 0.8, angle = 0)) + | |
annotate(geom = "text", | |
label = "OBSERVED", | |
x = 6.7, y = 200, size = 6, color = "red") | |
mean(pred_SD >= obs_SD) | |
# GAM fit | |
gam_fit <- gam(HR ~ hit_distance_sc + | |
s(spray_angle), | |
family = binomial, | |
data = sc_ip_300) | |
# display fit | |
grid1 <- expand.grid(hit_distance_sc = seq(300, 450, length = 50), | |
spray_angle = seq(-45, 45, length = 50)) | |
grid1$lp <- predict(gam_fit, grid, type = "response") | |
ggplot(grid1, aes(x = spray_angle, y = hit_distance_sc, | |
z = lp)) + | |
geom_contour_fill(breaks = seq(0, 1, by = .05)) + | |
scale_fill_distiller(palette="Spectral") + | |
theme(text=element_text(size=18)) + | |
ggtitle("Contours of P(HR) from GAM Model") + | |
theme(plot.title = element_text(colour = "blue", size = 18, | |
hjust = 0.5, vjust = 0.8, angle = 0)) | |
## posterior predictive simulation | |
PP <- predict(gam_fit, se.fit = TRUE) | |
N <- nrow(X) | |
invlogit <- function(y){ | |
exp(y) / (1 + exp(y)) | |
} | |
sc_ip_300$SA <- cut(sc_ip_300$spray_angle, | |
breaks = seq(-50, 50, by = 5)) | |
tabyl(sc_ip_300, SA, HR) |> adorn_percentages() | |
one_sim2 <- function(){ | |
require(LearnBayes) | |
require(janitor) | |
lp <- rnorm(N, PP$fit, PP$se.fit) | |
HR <- rbinom(N, size = 1, prob = invlogit(lp)) | |
df <- data.frame(HR = HR, | |
SA = sc_ip_300$SA) | |
sd(tabyl(df, SA, HR)[[3]]) | |
} | |
pred_SD <- replicate(1000, one_sim2()) | |
hist(pred_SD) | |
obs_SD <- sd(tabyl(sc_ip_300, SA, HR)[[3]]) | |
mean(pred_SD >= obs_SD) | |
# show two fits on one display | |
grid$Model <- "Logistic Fit" | |
grid1$Model <- "GAM Fit" | |
twogrids <- rbind(grid, grid1) | |
ggplot(twogrids, aes(x = spray_angle, y = hit_distance_sc, | |
z = lp)) + | |
geom_contour_fill(breaks = seq(0, 1, by = .05)) + | |
scale_fill_distiller(palette="Spectral") + | |
theme(text=element_text(size=18)) + | |
facet_wrap(~ Model) + | |
ylim(300, 430) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment