Skip to content

Instantly share code, notes, and snippets.

@bblfish
Created July 8, 2022 06:54
Show Gist options
  • Save bblfish/9f4a058c52eb46ee25d9262ace6981fb to your computer and use it in GitHub Desktop.
Save bblfish/9f4a058c52eb46ee25d9262ace6981fb to your computer and use it in GitHub Desktop.
Very basic model of an interpretation of http header to show that it is a dependent type
{-# OPTIONS --without-K --safe #-}
Type = Set
record Σ {A : Type } (B : A → Type) : Type where
constructor
_,_
field
pr₁ : A
pr₂ : B pr₁
open Σ public
infixr 0 _,_
Sigma : (A : Type) (B : A → Type) → Type
Sigma A B = Σ {A} B
syntax Sigma A (λ x → b) = Σ x ꞉ A , b
infix -1 Sigma
_×_ : Type → Type → Type
A × B = Σ x ꞉ A , B
infixr 2 _×_
data ℕ : Type where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
data List (A : Type) : Type where
[] : List A
_::_ : A → List A → List A
infixr 10 _::_
data 𝟘 : Type where
data 𝟙 : Type where
⋆ : 𝟙 -- \star
data 𝟚 : Type where
zero one : 𝟚
data _∔_ (A B : Type) : Type where
inl : A → A ∔ B
inr : B → A ∔ B
infixr 20 _∔_
data Mime : Type where
xml rdf : Mime
-- dependent type for mime types
Tp : Mime → Type
Tp xml = ℕ -- should be dom
Tp rdf = 𝟚 -- should be set of triples
HttpResponse : Type
HttpResponse = Mime × List 𝟚 -- an http response consists of a header and bytes
-- Interpretation of HTTPResponses return either an parsing error ⋆
-- or the type of object corresponding to the mime type
-- realistic examples too complex
Inter : (r : HttpResponse) → (𝟙 ∔ Tp (pr₁ r))
Inter (rdf , one :: zero :: zero :: one :: [] ) = inr zero
Inter (xml , one :: one :: zero :: one :: [] ) = inr 22
Inter (m , bits) = inl ⋆
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment