Created
December 2, 2021 16:39
-
-
Save bbolker/f6db767d498c1e100f41de464cda8d7f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| library(MuMIn) | |
| library(lme4) | |
| library(glmmTMB) | |
| library(emmeans) | |
| set.seed(2) ## simulate some data... | |
| dd <- expand.grid(f1 = factor(1:3), f2 = factor(1:3), | |
| g = factor(1:10), rep = 1:2) | |
| Z <- model.matrix(~g-1, dd) | |
| b <- rnorm(10) | |
| X <- model.matrix(~f1 + f2, dd) | |
| beta <- 1:5 | |
| eta <- X%*%beta + Z%*%b | |
| dd$y <- rnbinom(nrow(dd), mu = exp(eta), size = 1) | |
| options(na.action = "na.fail") | |
| mod1 <- glmer.nb(y ~ f1 + f2 + (1|g), data = dd) | |
| mod1_d <- dredge(mod1, rank = "AIC") | |
| mod1_a <- model.avg(mod1_d, fit = TRUE, data = dd) | |
| emmeans(mod1_a, list(pairwise ~ f1 | f2), data=dd, adjust="Tukey") | |
| mod2 <- glmmTMB(y ~ f1 + f2 + (1|g), data = dd, family = nbinom2) | |
| mod2_d <- dredge(mod2, rank = "AIC") | |
| mod2_a <- model.avg(mod2_d, fit = TRUE, data = dd) | |
| emmeans(mod2_a, list(pairwise ~ f1 | f2), data=dd, adjust="Tukey") | |
| ## | |
| vcov(mod2_a, full = TRUE) | |
| MuMIn:::vcov.averaging(mod2_a, full = TRUE) | |
| ## hacked version of vcov.averaging | |
| va <- function (object, full = FALSE, ...) { | |
| object <- MuMIn:::upgrade_averaging_object(object) | |
| full <- MuMIn:::.checkFull(object, full) | |
| full <- as.logical(full)[1L] | |
| models <- attr(object, "modelList") | |
| if (is.null(models)) | |
| stop("cannot calculate covariance matrix from ", "'averaging' object without component models") | |
| fix_mat <- function(x) { | |
| v <- as.matrix(x$cond) | |
| nn <- sprintf("cond(%s)", rownames(v)) | |
| nn <- gsub("(Intercept)", "Int", nn) | |
| dimnames(v) <- list(nn, nn) | |
| v | |
| } | |
| vcovs <- lapply(lapply(models, vcov), fix_mat) | |
| names.all <- dimnames(object$coefArray)[[3L]] | |
| nvars <- length(names.all) | |
| nvarseq <- seq(nvars) | |
| wts <- Weights(object) | |
| wts <- wts/sum(wts) | |
| vcov0 <- matrix(if (full) | |
| 0 | |
| else NA_real_, nrow = nvars, ncol = nvars, dimnames = list(names.all, | |
| names.all)) | |
| vcovs2 <- lapply(vcovs, function(v) { | |
| i <- match(MuMIn:::fixCoefNames(dimnames(v)[[1L]]), names.all) | |
| vcov0[i, i] <- v | |
| return(vcov0) | |
| }) | |
| b1 <- object$coefArray[, 1L, ] | |
| if (full) | |
| b1[is.na(b1)] <- 0 | |
| avgb <- object$coefficients[2L - full, ] | |
| res <- sapply(nvarseq, function(c1) sapply(nvarseq, function(c2) { | |
| weighted.mean(sapply(vcovs2, "[", c1, c2) + (b1[, c1] - | |
| avgb[c1]) * (b1[, c2] - avgb[c2]), wts, na.rm = TRUE) | |
| })) | |
| dimnames(res) <- list(names.all, names.all) | |
| return(res) | |
| } | |
| va(mod2_a, full = TRUE) | |
| emmeans(mod2_a, list(pairwise ~ f1 | f2), data=dd, adjust="Tukey", | |
| vcov. = va(mod2_a, full = TRUE)) | |
| ## still fails |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment