Last active
May 31, 2023 08:26
-
-
Save bchaber/65de7b0993303ce66aa57528f143c501 to your computer and use it in GitHub Desktop.
Generatory problemów symetrycznych
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
function fdmproblem(n) | |
m = n | |
A = zeros(n*m, n*m) | |
dof = reshape(1:n*m, n, m) | |
for i=2:n, j=1:m | |
A[dof[i,j], dof[i-1,j]] -= 1.0 | |
A[dof[i,j], dof[i,j]] += 1.0 | |
end | |
for i=1:n, j=2:m | |
A[dof[i,j], dof[i,j-1]] -= 1.0 | |
A[dof[i,j], dof[i,j]] += 1.0 | |
end | |
for i=1:n-1, j=1:m | |
A[dof[i,j], dof[i+1,j]] -= 1.0 | |
A[dof[i,j], dof[i,j]] += 1.0 | |
end | |
for i=1:n, j=1:m-1 | |
A[dof[i,j], dof[i,j+1]] -= 1.0 | |
A[dof[i,j], dof[i,j]] += 1.0 | |
end | |
for i=(1,n), j=1:m | |
A[dof[i,j], :] .= 0.0 | |
A[dof[i,j], dof[i,j]] = 1.0 | |
end | |
for i=1:n, j=(1,m) | |
A[dof[i,j], :] .= 0.0 | |
A[:, dof[i,j]] .= 0.0 | |
A[dof[i,j], dof[i,j]] = 1.0 | |
end | |
x = zeros(n*m) | |
for i=1:n, j=1:m | |
x[dof[i,j]] += sin(1.0π * (i-1)/(n-1)) | |
x[dof[i,j]] += sin(1.0π * (j-1)/(m-1)) | |
end | |
b = A * x | |
free = vec([dof[i, j] for i=2:n-1, j=2:m-1]) | |
return sparse(A[free, free]), b[free] | |
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using LinearAlgebra | |
using SparseArrays | |
stiffness_element(lx, ly) = | |
[lx/ly 1 lx/ly 1 | |
1 ly/lx 1 ly/lx | |
lx/ly 1 lx/ly 1 | |
1 ly/lx 1 ly/lx] | |
mass_element(lx, ly) = (lx * ly) / 6.0 * | |
[ 2. 0 -1 0 | |
0 2 0 -1 | |
-1 0 2 0 | |
0 -1 0 2] | |
function assemble!(S, R, T, el2ed, el2edd, dof, lx, ly, nelem, ndof; εr=1, μr=1, ε0=8.854e-12, μ0=4e-7π) | |
# ASSUMPTION: Waveguide is homogenous | |
# Assemble stiffness and mass matrices | |
ε = εr*ε0 | |
for ielem = 1:nelem # Assemble by elements | |
Se = stiffness_element(lx, ly) | |
Te = mass_element(lx, ly) | |
for jedge = 1:4 | |
dj = el2edd[ielem, jedge] | |
jj = dof[el2ed[ielem, jedge]] | |
if jj == 0 | |
continue | |
end | |
for kedge = 1:4 | |
dk = el2edd[ielem, kedge] | |
kk = dof[el2ed[ielem, kedge]] | |
if kk == 0 | |
continue | |
end | |
S[jj, kk] = S[jj, kk] + dj * dk * (1/μr) * Se[jedge, kedge] | |
T[jj, kk] = T[jj, kk] + dj * dk * (μ0*ε) * Te[jedge, kedge] | |
end | |
end | |
end | |
return nothing | |
end | |
function lhs(S, T, R, Δt) | |
A = (+0.25Δt^2 * S + T + 0.5Δt * R) | |
end | |
function rhs(S, T, R, Δt, ep, epp) | |
b = (-0.25Δt^2 * S - T + 0.5Δt * R) * epp + | |
(-0.50Δt^2 * S + 2T) * ep | |
end | |
function quadmesh(a, b, Nx, Ny) | |
NUM_EDGES = 2(Nx*Ny) + Nx + Ny | |
NUM_ELEMS = Nx * Ny | |
el2edd = repeat([+1 +1 -1 -1], NUM_ELEMS) | |
el2ed = zeros(Int64, NUM_ELEMS, 4) | |
for jj = 1:Ny | |
for ii = 1:Nx | |
kk = (jj-1)Nx + ii | |
el2ed[kk, :] .= [ii, ii+Nx+1, ii+Nx+1+Nx, ii+Nx] | |
el2ed[kk, :] .+= (jj-1) * (Nx + Nx + 1) | |
end | |
end | |
return el2ed, el2edd, NUM_EDGES | |
end | |
function femproblem(n) | |
m = n | |
@assert n * m < 40*40 "Are you sure? Try smaller problem first (n < 40)!" | |
# parameters | |
Δt = 0.01e-9 | |
Lx = 2.00 | |
Ly = 2.00 | |
lx = Lx / n | |
ly = Ly / m | |
el2ed, el2edd, nedge = quadmesh(Lx, Ly, n, m); | |
# degrees of freedom | |
DOF_NONE = 0 | |
DOF_PEC = 1 | |
h = [ 1+(2n+1)i: n+0+(2n+1)i for i=0:m] | |
v = [n+1+(2n+1)i:2n+1+(2n+1)i for i=0:m-1] | |
Γ = zeros(Int64, nedge) | |
Γ[first(h)] .= DOF_PEC | |
Γ[last(h)] .= DOF_PEC | |
for i=1:m | |
Γ[first(v[i])] = DOF_PEC | |
Γ[last(v[i])] = DOF_PEC | |
end | |
dof = collect(1:nedge) | |
free = Γ .!= DOF_PEC | |
# assemble finite element matrices | |
S = zeros(nedge, nedge) | |
T = zeros(nedge, nedge) | |
R = zeros(nedge, nedge) | |
assemble!(S, T, R, el2ed, el2edd, dof, lx, ly, n*m, nedge) | |
# construct the problem left hand side | |
A = lhs(S[free, free], T[free, free], R[free, free], Δt); | |
# calculate eigensolution and use it as a starting point | |
k², v = eigen(Array(S[free, free]), Array(T[free, free])) | |
e = zeros(nedge) | |
ep = copy(e) | |
epp = copy(e) | |
ep[free] .= epp[free] .= v[:, 1+(n-1)*(m-1)] | |
# construct the problem right hand side | |
b = rhs(S[free, free], T[free, free], R[free, free], Δt, ep[free], epp[free]) | |
return 1e23sparse(A), 1e23b | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment