Skip to content

Instantly share code, notes, and snippets.

View bdqnghi's full-sized avatar
🎱
Focusing

Nghi D. Q. Bui bdqnghi

🎱
Focusing
View GitHub Profile
0x698e692B557310fE216127FF9Dd65E06782f6425
0x25b93ff09948D6E1B40aA0190f5B3bA0B3d65139
0x25b93ff09948D6E1B40aA0190f5B3bA0B3d65139
@bdqnghi
bdqnghi / rank_metrics.py
Created May 22, 2018 19:15 — forked from bwhite/rank_metrics.py
Ranking Metrics
"""Information Retrieval metrics
Useful Resources:
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt
http://www.nii.ac.jp/TechReports/05-014E.pdf
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf
Learning to Rank for Information Retrieval (Tie-Yan Liu)
"""
import numpy as np
@bdqnghi
bdqnghi / weight_init.py
Created September 26, 2018 12:14 — forked from jeasinema/weight_init.py
A simple script for parameter initialization for PyTorch
#!/usr/bin/env python
# -*- coding:UTF-8 -*-
import torch
import torch.nn as nn
import torch.nn.init as init
def weight_init(m):
'''
@bdqnghi
bdqnghi / text.txt
Last active April 5, 2020 19:01
Note on caps net
1) Input MNIST: [28 x 28 x 1] ( 1 color channel)
2) Kernel = [9x9]
3) Apply kernel to input 256 times:
(28 - 9 ) + 1 = 20
Output is 256 x 20 x 20
4) Relu: 256 x 20 x 20
5) Apply kernel again with stride = 2:
((20 - 9) + 1) = 6
Output is 256 x 6 x 6
6) We’re going to cut the stack up into 32 decks with 8 cards each deck.
@bdqnghi
bdqnghi / split_train_test_val.py
Last active November 2, 2021 17:25
Split train test val script
import shutil
import os
import random
from random import shuffle
from shutil import copyfile
from concurrent.futures import ThreadPoolExecutor
# ROOT = "/home/nghibui/codes/bi-tbcnn/"
src_dir = "train"
tgt_dir = "train_val"
@bdqnghi
bdqnghi / test_thread.py
Created July 29, 2021 12:46
Read multiple files in multiple threads, process and write into a single file
import codecs
import queue # or queue in Python 3
import threading
import os
class PrintThread(threading.Thread):
def __init__(self, queue):
threading.Thread.__init__(self)
self.queue = queue