- act2vec, trace2vec, log2vec, model2vec https://link.springer.com/chapter/10.1007/978-3-319-98648-7_18
- apk2vec https://arxiv.org/abs/1809.05693
- app2vec http://paul.rutgers.edu/~qma/research/ma_app2vec.pdf
- author2vec http://dl.acm.org/citation.cfm?id=2889382
- bb2vec https://arxiv.org/pdf/1809.09621.pdf
- behavior2vec https://dl.acm.org/citation.cfm?id=3184454
- care2vec https://arxiv.org/abs/1812.00715
- cat2vec http://104.155.136.4:3000/forum?id=HyNxRZ9xg
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
# -*- coding:UTF-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.init as init | |
def weight_init(m): | |
''' |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Information Retrieval metrics | |
Useful Resources: | |
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt | |
http://www.nii.ac.jp/TechReports/05-014E.pdf | |
http://www.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf | |
http://hal.archives-ouvertes.fr/docs/00/72/67/60/PDF/07-busa-fekete.pdf | |
Learning to Rank for Information Retrieval (Tie-Yan Liu) | |
""" | |
import numpy as np |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
NLP and source code papers, very scattered and partial listing | |
(collected by Nathan Schneider and Brendan O'Connor) | |
ICML 2014 | |
Maddison and Tarlow | |
Structured Generative Models of Natural Source Code | |
http://jmlr.org/proceedings/papers/v32/maddison14.pdf | |
ACL 2013 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import types | |
import tensorflow as tf | |
import numpy as np | |
# Expressions are represented as lists of lists, | |
# in lisp style -- the symbol name is the head (first element) | |
# of the list, and the arguments follow. | |
# add an expression to an expression list, recursively if necessary. | |
def add_expr_to_list(exprlist, expr): |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Implementation of a simple MLP network with one hidden layer. Tested on the iris data set. | |
# Requires: numpy, sklearn>=0.18.1, tensorflow>=1.0 | |
# NOTE: In order to make the code simple, we rewrite x * W_1 + b_1 = x' * W_1' | |
# where x' = [x | 1] and W_1' is the matrix W_1 appended with a new row with elements b_1's. | |
# Similarly, for h * W_2 + b_2 | |
import tensorflow as tf | |
import numpy as np | |
from sklearn import datasets | |
from sklearn.model_selection import train_test_split |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Deep Auto-Encoder implementation | |
An auto-encoder works as follows: | |
Data of dimension k is reduced to a lower dimension j using a matrix multiplication: | |
softmax(W*x + b) = x' | |
where W is matrix from R^k --> R^j | |
A reconstruction matrix W' maps back from R^j --> R^k |
- General Background and Overview
- Probabilistic Data Structures for Web Analytics and Data Mining : A great overview of the space of probabilistic data structures and how they are used in approximation algorithm implementation.
- Models and Issues in Data Stream Systems
- Philippe Flajolet’s contribution to streaming algorithms : A presentation by Jérémie Lumbroso that visits some of the hostorical perspectives and how it all began with Flajolet
- Approximate Frequency Counts over Data Streams by Gurmeet Singh Manku & Rajeev Motwani : One of the early papers on the subject.
- [Methods for Finding Frequent Items in Data Streams](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.9800&rep
The easiest way to start using the LLVM C++ API by example is to have LLVM generate the API usage for a given code sample. In this example it will emit the code required to rebuild the test.c
sample by using LLVM:
$ clang -c -emit-llvm test.c -o test.ll
$ llc -march=cpp test.ll -o test.cpp
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
# create .bc file | |
clang -emit-llvm -c testcfg.c | |
# create .dot file | |
opt -dot-cfg testcfg.bc | |
# cteate png,pdf | |
dot -Tpng -o main.png cfg.main.dot |
NewerOlder