Skip to content

Instantly share code, notes, and snippets.

View bdqnghi's full-sized avatar
🎱
Focusing

Nghi D. Q. Bui bdqnghi

🎱
Focusing
View GitHub Profile
@bdqnghi
bdqnghi / subexpr.py
Created September 19, 2017 18:09 — forked from anj1/subexpr.py
import types
import tensorflow as tf
import numpy as np
# Expressions are represented as lists of lists,
# in lisp style -- the symbol name is the head (first element)
# of the list, and the arguments follow.
# add an expression to an expression list, recursively if necessary.
def add_expr_to_list(exprlist, expr):
@bdqnghi
bdqnghi / simple_mlp_tensorflow.py
Created July 2, 2017 19:56 — forked from vinhkhuc/simple_mlp_tensorflow.py
Simple Feedforward Neural Network using TensorFlow
# Implementation of a simple MLP network with one hidden layer. Tested on the iris data set.
# Requires: numpy, sklearn>=0.18.1, tensorflow>=1.0
# NOTE: In order to make the code simple, we rewrite x * W_1 + b_1 = x' * W_1'
# where x' = [x | 1] and W_1' is the matrix W_1 appended with a new row with elements b_1's.
# Similarly, for h * W_2 + b_2
import tensorflow as tf
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
@bdqnghi
bdqnghi / autoencoder.py
Created May 29, 2017 19:42 — forked from saliksyed/autoencoder.py
Tensorflow Auto-Encoder Implementation
""" Deep Auto-Encoder implementation
An auto-encoder works as follows:
Data of dimension k is reduced to a lower dimension j using a matrix multiplication:
softmax(W*x + b) = x'
where W is matrix from R^k --> R^j
A reconstruction matrix W' maps back from R^j --> R^k
@bdqnghi
bdqnghi / gist:325e4ff7431cc9434d67d580312adcbc
Created April 27, 2017 15:13 — forked from debasishg/gist:8172796
A collection of links for streaming algorithms and data structures
  1. General Background and Overview
@bdqnghi
bdqnghi / README.markdown
Created April 17, 2017 18:07 — forked from alloy/README.markdown
Learn the LLVM C++ API by example.

The easiest way to start using the LLVM C++ API by example is to have LLVM generate the API usage for a given code sample. In this example it will emit the code required to rebuild the test.c sample by using LLVM:

$ clang -c -emit-llvm test.c -o test.ll
$ llc -march=cpp test.ll -o test.cpp
@bdqnghi
bdqnghi / llvm create cfg.sh
Created April 17, 2017 17:20
create CFG with llvm
#!/bin/bash
# create .bc file
clang -emit-llvm -c testcfg.c
# create .dot file
opt -dot-cfg testcfg.bc
# cteate png,pdf
dot -Tpng -o main.png cfg.main.dot
@bdqnghi
bdqnghi / App.java
Last active January 18, 2017 19:02
Kth smallest number of multiple sorted arrays
package com.smu.software;
import java.util.Arrays;
/**
* Hello world!
*/
public class App {
public static void main(String[] args) {
@bdqnghi
bdqnghi / CFG.java
Created January 17, 2017 09:20
Soot example
package com.software.mining;
import polyglot.visit.DataFlow;
import soot.*;
import soot.jimple.toolkits.callgraph.CallGraph;
import soot.jimple.toolkits.callgraph.Edge;
import soot.jimple.toolkits.callgraph.Targets;
import soot.options.Options;
import soot.toolkits.graph.ExceptionalUnitGraph;
import soot.toolkits.graph.pdg.HashMutablePDG;
#!/usr/bin/python
import socket,sys,time,datetime,argparse,os
flag = 0 # we're gonna use this flag later. Just keep it in mind
os.system('clear') # Clear the console window
line = "+" * 80 # Just a fancy line consisting '+'
desc = line+'''\nA Simple port scanner that works!! (c) digitz.org
Example usage: python port_scanner.py example.com 1 1000
The above example will scan the host \'example.com\' from port 1 to 1000
To scan most common ports, use: python port_scanner.py example.com\n'''+line+"\n"