Created
August 3, 2018 17:21
-
-
Save bearpelican/abe706e9f97a2ed216e196219c461acd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import torch.nn as nn | |
| import math | |
| import torch.utils.model_zoo as model_zoo | |
| __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | |
| 'resnet152'] | |
| model_urls = { | |
| 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
| 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | |
| 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
| 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
| 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
| } | |
| def conv3x3(in_planes, out_planes, stride=1): | |
| """3x3 convolution with padding""" | |
| return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
| padding=1, bias=False) | |
| class BasicBlock(nn.Module): | |
| expansion = 1 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(BasicBlock, self).__init__() | |
| self.conv1 = conv3x3(inplanes, planes, stride) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.conv2 = conv3x3(planes, planes) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class Bottleneck(nn.Module): | |
| expansion = 4 | |
| def __init__(self, inplanes, planes, stride=1, downsample=None): | |
| super(Bottleneck, self).__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
| padding=1, bias=False) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| self.stride = stride | |
| def forward(self, x): | |
| residual = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| residual = self.downsample(x) | |
| out += residual | |
| out = self.relu(out) | |
| return out | |
| class ResNet(nn.Module): | |
| def __init__(self, block, layers, num_classes=1000): | |
| self.inplanes = 64 | |
| super(ResNet, self).__init__() | |
| self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | |
| bias=False) | |
| self.bn1 = nn.BatchNorm2d(64) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(block, 64, layers[0]) | |
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
| self.avgpool = nn.AdaptiveAvgPool2d(1) | |
| self.fc = nn.Linear(512 * block.expansion, num_classes) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| def _make_layer(self, block, planes, blocks, stride=1): | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, planes * block.expansion, | |
| kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for i in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.avgpool(x) | |
| x = x.view(x.size(0), -1) | |
| x = self.fc(x) | |
| return x | |
| def resnet18(pretrained=False, **kwargs): | |
| """Constructs a ResNet-18 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) | |
| if pretrained: | |
| model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) | |
| return model | |
| def resnet34(pretrained=False, **kwargs): | |
| """Constructs a ResNet-34 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) | |
| if pretrained: | |
| model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) | |
| return model | |
| def resnet50(pretrained=False, **kwargs): | |
| """Constructs a ResNet-50 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | |
| if pretrained: | |
| model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
| return model | |
| def resnet101(pretrained=False, **kwargs): | |
| """Constructs a ResNet-101 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) | |
| if pretrained: | |
| model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) | |
| return model | |
| def resnet152(pretrained=False, **kwargs): | |
| """Constructs a ResNet-152 model. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| """ | |
| model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) | |
| if pretrained: | |
| model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) | |
| return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment