Created
March 22, 2022 12:08
-
-
Save beetleskin/237cf281aa5b98f8c34b5a07c0c2baa0 to your computer and use it in GitHub Desktop.
Covariances for GTSAM point-features
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gtsam | |
import gtsam_unstable | |
def point_covaraince_test(): | |
# graph with point-features | |
# --------------------------- | |
p_obs = gtsam.Point2(1, 2) | |
cov = np.array(((2., -1.), (-1., 3.))) | |
p_0 = gtsam.Pose2(0,0,np.pi/2) | |
graph = gtsam.NonlinearFactorGraph() | |
initial = gtsam.Values() | |
graph.add(gtsam.PriorFactorPose2(0, p_0, gtsam.noiseModel.Diagonal.Sigmas(np.array((1e-5, 1e-5, 1e-5))))) | |
graph.add(gtsam.PriorFactorPoint2(1, p_obs, gtsam.noiseModel.Gaussian.Covariance(cov))) | |
graph.add(gtsam_unstable.DeltaFactor(0, 1, gtsam.Point2(1, -1), gtsam.noiseModel.Diagonal.Sigmas(np.array((120, 120))))) | |
initial.insert_pose2(0, p_0) | |
initial.insert_point2(1, p_obs) | |
params = gtsam.LevenbergMarquardtParams() | |
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params) | |
result = optimizer.optimize() | |
marginals = gtsam.Marginals(graph, result) | |
posterior_0 = marginals.marginalCovariance(0) | |
posterior_1 = marginals.marginalCovariance(1) | |
result_0 = result.atPose2(0) | |
result_1 = result.atPoint2(1) | |
#plot.plot_trajectory(0, result, marginals=marginals) | |
# graph with pose-features | |
# --------------------------- | |
p_obs = gtsam.Pose2(1, 2, np.pi / 2) | |
cov = np.array(((2., -1.), (-1., 3.))) | |
p_0 = gtsam.Pose2(0, 0, np.pi / 2) | |
graph = gtsam.NonlinearFactorGraph() | |
initial = gtsam.Values() | |
graph.add(gtsam.PriorFactorPose2(0, p_0, gtsam.noiseModel.Diagonal.Sigmas(np.array((1e-5, 1e-5, 1e-5))))) | |
graph.add(gtsam.PoseTranslationPrior2D(1, p_obs, gtsam.noiseModel.Gaussian.Covariance(cov))) | |
graph.add(gtsam.BetweenFactorPose2(0, 1, gtsam.Pose2(1, -1, 0), gtsam.noiseModel.Diagonal.Sigmas(np.array((120, 120, 12))))) | |
initial.insert_pose2(0, p_0) | |
initial.insert_pose2(1, p_obs) | |
params = gtsam.LevenbergMarquardtParams() | |
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params) | |
result = optimizer.optimize() | |
marginals = gtsam.Marginals(graph, result) | |
posterior2_0 = marginals.marginalCovariance(0) | |
posterior2_1 = marginals.marginalCovariance(1) | |
result2_0 = result.atPose2(0) | |
result2_1 = result.atPose2(1) | |
# from plot.py | |
gRp = result2_1.rotation().matrix() | |
pPp = posterior2_1[0:2, 0:2] | |
posterior2_1_global = np.matmul(np.matmul(gRp, pPp), gRp.T) | |
assert np.allclose(posterior2_1_global, posterior_1) | |
if __name__ == '__main__': | |
point_covaraince_test() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment