Created
September 17, 2024 12:36
-
-
Save begoon/2b32d7e69cd3525469aeecc3f0f87094 to your computer and use it in GitHub Desktop.
Sad words classifier
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import torch | |
from torch import Tensor | |
import torch.nn as nn | |
import torch.optim as optim | |
from torch.utils.data import Dataset, DataLoader | |
sad_words = ["грустно", "одиноко", "cry", "tears", "sad", "sorrow", "grief", "pain", "lonely"] | |
normal_words = ["happy", "joy", "love", "smile", "cheerful", "excited", "fun"] | |
all_words = sad_words + normal_words | |
initial_labels = [1] * len(sad_words) + [0] * len(normal_words) | |
MAX_WORD_LENGTH = 10 | |
def encode_word(word: str, max_length: int = MAX_WORD_LENGTH) -> list[int]: | |
word = word.lower() | |
numbers = [ord(char) for char in word] | |
if len(numbers) < max_length: | |
numbers += [0] * (max_length - len(numbers)) | |
return numbers[:max_length] | |
encoded_words = [encode_word(word) for word in all_words] | |
data = torch.tensor(encoded_words, dtype=torch.float32) | |
labels = torch.tensor(initial_labels, dtype=torch.long) | |
class WordDataset(Dataset[tuple[Tensor, Tensor]]): | |
def __init__(self, data: Tensor, labels: Tensor) -> None: | |
self.data = data | |
self.labels = labels | |
def __len__(self) -> int: | |
return len(self.data) | |
def __getitem__(self, idx: int) -> tuple[Tensor, Tensor]: | |
return self.data[idx], self.labels[idx] | |
dataset = WordDataset(data, labels) | |
train_loader = DataLoader(dataset, batch_size=4, shuffle=True) | |
class Model(nn.Module): | |
def __init__(self) -> None: | |
super(Model, self).__init__() | |
self.fc1 = nn.Linear(MAX_WORD_LENGTH, 16) | |
self.fc2 = nn.Linear(16, 8) | |
self.fc3 = nn.Linear(8, 2) # binary classification | |
def forward(self, x: Tensor) -> Tensor: | |
x = torch.relu(self.fc1(x)) | |
x = torch.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
model = Model() | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.Adam(model.parameters(), lr=0.001) | |
def train( | |
model: nn.Module, | |
loader: DataLoader[tuple[Tensor, Tensor]], | |
criterion: nn.Module, | |
optimizer: optim.Optimizer, | |
epochs: int = 10, | |
) -> None: | |
for epoch in range(epochs): | |
running_loss = 0.0 | |
for inputs, targets in loader: | |
optimizer.zero_grad() | |
outputs = model(inputs) | |
loss = criterion(outputs, targets) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
print(f"epoch [{epoch+1}/{epochs}], loss: {running_loss / len(loader):.4f}") | |
train(model, train_loader, criterion, optimizer) | |
torch.save(model.state_dict(), "sad_words_model.pth") | |
def load_model() -> nn.Module: | |
model = Model() | |
model.load_state_dict(torch.load("sad_words_model.pth", weights_only=True)) | |
model.eval() | |
return model | |
def is_sad(model: nn.Module, word: str) -> bool: | |
encoded = encode_word(word) | |
# Add batch dimension | |
input_tensor = torch.tensor(encoded, dtype=torch.float32).unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_tensor) | |
_, predicted_class = torch.max(output, 1) | |
return predicted_class.item() == 1 | |
loaded_model = load_model() | |
word = sys.argv[1] | |
result = is_sad(loaded_model, word) | |
print(f"'{word}' is {"sad" if result else "not sad"}.") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment