Last active
April 10, 2018 08:21
-
-
Save bellbind/52c049c07dbd0ddc615f4e32109421bf to your computer and use it in GitHub Desktop.
[javascript][tensorflowjs] train XOR function with tensorflow.js
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
<!doctype html> | |
<html> | |
<head> | |
<meta charset="utf-8" /> | |
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script> | |
<script src="script.js" defer="defer"></script> | |
</head> | |
<body></body> | |
</html> |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// `tf`: root object of tensorflow.js | |
// build keras model | |
const model = tf.sequential(); // factory function for keras Sequential obj | |
model.add(tf.layers.dense({units: 4, inputDim: 2, activation: "relu"})); | |
model.add(tf.layers.dense({units: 2, activation: "softmax"})); | |
// names for keras are turned as camelCase string | |
model.compile({loss: "categoricalCrossentropy", optimizer: "sgd"}); | |
// tensor data: similar as numpy array | |
const inputs = [[0,0], [0, 1], [1, 0], [1, 1]]; | |
const outputs = inputs.map(([a, b]) => a ^ b); | |
const xs = tf.tensor(inputs); | |
const ys = tf.oneHot(tf.tensor(outputs), 2); | |
// train and check | |
(async () => { | |
const tx = tf.tensor([[1, 1], [0, 1], [0, 0], [1, 0]]); | |
performance.mark(`start`); | |
for (let i = 0; i < 100; i++) { | |
performance.mark(`start-fit-${i}`); | |
const r = await model.fit(xs, ys, {epochs: 100}); | |
performance.mark(`end-fit-${i}`); | |
performance.measure(`fit-${i}`, `start-fit-${i}`, `end-fit-${i}`); | |
const ty = model.predict(tx); | |
await display(i, tx, ty); | |
await new Promise(r => setTimeout(r, 10)); | |
} | |
performance.mark(`end`); | |
performance.measure(`total`, `start`, `end`); | |
await displayModel(model); | |
await displayWeights(model); | |
await displayDuration(); | |
})().catch(console.error); | |
// outputs | |
async function display(i, tx, ty) { | |
const [xs, ys, vs] = await Promise.all( | |
[tx.data(), ty.data(), ty.argMax(1).data()]); | |
const ms = performance.getEntriesByName(`fit-${i}`)[0].duration; | |
const ls = [...vs].map((v, i) => { | |
const l = 2 * i, r = l + 1; | |
return `${xs[l]} ^ ${xs[r]} = ${v} (0=${ys[l]}, 1=${ys[r]})\n`; | |
}); | |
const pre = document.createElement("pre"); | |
pre.textContent = `[Train XOR: ${i + 1} (${ms}ms)]\n` + ls.join(""); | |
document.body.insertBefore(pre, document.body.firstChild); | |
} | |
async function displayDuration() { | |
const ms = performance.getEntriesByName(`total`)[0].duration; | |
const pre = document.createElement("pre"); | |
pre.textContent = `(total: ${ms / 1000}sec)`; | |
document.body.insertBefore(pre, document.body.firstChild); | |
} | |
async function displayModel(model) { | |
const pre = document.createElement("pre"); | |
pre.textContent = JSON.stringify(JSON.parse(model.toJSON()), null, 2); | |
document.body.insertBefore(pre, document.body.firstChild); | |
} | |
async function displayWeights(model) { | |
const ls = model.weights.map(({name, shape, val}) => { | |
return JSON.stringify({name, shape, values: [...val.dataSync()]}); | |
}); | |
const pre = document.createElement("pre"); | |
pre.textContent = ls.join("\n"); | |
document.body.insertBefore(pre, document.body.firstChild); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
NOTE:
fit()
) when tab hiddentf.oneHot()
, thenfit()
fails to change wieghts